精英家教网 > 高中数学 > 题目详情
已知三条不重合的直线两个不重合的平面,给出下列四个命题:
①若
②若
③若
④若. 其中真命题是       (   )
A.① ②B.③ ④C.① ③D.② ④
D
,则,命题①不正确;
,则。而,所以,命题②正确;
根据平面平行判定可知,当一个平面内的两条相交直线分别于另一平面平行时才有两平面平行,所以命题③不正确;
根据面面垂直性质定理可知,命题④正确。
故选D
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

如图,直线平面,垂足为,正四面体的棱长为4,在平面内,
是直线上的动点,则当的距离为最大时,正四面体在平面上的射影面
积为(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,在边长为2的菱形ABCD中,  ,现将沿BD翻折至,使二面角的大小为,求和平面BDC所成角的正弦值是

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

..(本题满分12分) 本题共有2个小题,第1小题满分6分,第2小题满分6分.
(理)如图,已知矩形的边与正方形所在平面垂直,是线段的中点。
(1)求证:平面
(2)求二面角的大小。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

.已知正四面体的高为H,它的内切球半径为R,则R︰H=______________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知直线上个点最多将直线分成段,平面上条直线最多将平面分成部分(规定:若),则类似地可以推算得到空间里个平面最多将空间分成  ▲  部分

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

.(本小题满分13分)如图,四棱锥中,⊥底面,∠=120°,=,∠=90°,是线段上的一点(不包括端点).
(Ⅰ)求证:⊥平面
(Ⅱ)求二面角的正切值;
(Ⅲ)试确定点的位置,使直线与平面所成角的正弦值为.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)
如图5所示:在边长为的正方形中,,且
分别交两点, 将正方形沿折叠,使得重合,
构成如图6所示的三棱柱 .
( I )在底边上有一点,且::, 求证:平面 ;
( II )求直线与平面所成角的正弦值

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

正方体-中,与平面所成角的余弦值为
A.B.C.D.

查看答案和解析>>

同步练习册答案