精英家教网 > 高中数学 > 题目详情
已知抛物线C1:y2=2px(p>0)的焦点F以及椭圆C2的上、下焦点及左、右顶点均在圆O:x2+y2=1上.
(1)求抛物线C1和椭圆C2的标准方程;
(2)过点F的直线交抛物线C1于A、B两不同点,交y轴于点N,已知,求证:λ12为定值.
(3)直线l交椭圆C2于P、Q两不同点,P、Q在x轴的射影分别为P'、Q',,若点S满足:,证明:点S在椭圆C2上.

(1)解:由C1:y2=2px(p>0)焦点F(,0)在圆O:x2+y2=1上得:
∴p=2
∴抛物线C1:y2=4x
同理由椭圆C2的上、下焦点(0,c),(0,﹣c)及左、右顶点(﹣b,0),(b,0)均在圆O:x2+y2=1上可解得:b=c=1,a=
∴椭圆C2
(2)证明:设直线AB的方程为y=k(x﹣1),A(x1,y1),B(x2,y2),则N(0,﹣k)直线与抛物线联立,消元可得
k2x2﹣(2k2+4)x+k2=0
∴x1+x2=,x1x2=1

∴λ1(1﹣x1)=x1,λ2(1﹣x2)=x2

∴λ12=为定值;
(3)证明:设P(x3,y3),Q(x4,y4),则P'(x3,0),Q'(x4,0),

∴S(x3+x4,y3+y4

∴2x3x4+y3y4=﹣1①
∵P,Q在椭圆上,
②,

由①+②+③得(x3+x42+=1
∴点S在椭圆C2

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知抛物线C1:y2=4mx(m>0)的焦点为F2,其准线与x轴交于点F1,以F1,F2为焦点,离心率为
12
的椭圆C2与抛物线C1在x轴上方的一个交点为P.
(1)当m=1时,求椭圆的标准方程及其右准线的方程;
(2)用m表示P点的坐标;
(3)是否存在实数m,使得△PF1F2的边长是连续的自然数,若存在,求出这样的实数m;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C1:y2=x+7,圆C2:x2+y2=5.
(1)求证抛物线与圆没有公共点;
(2)过点P(a,0)作与x轴不垂直的直线l交C1,C2依次为A、B、C、D,若|AB|=|CD|,求实数a的变化范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•河北模拟)已知抛物线C1:y2=2px和圆C2(x-
p
2
)
2
+y2=
p2
4
,其中p>0,直线l经过C1的焦点,依次交C1,C2于A,B,C,D四点,则
AB
CD
的值为
p2
4
p2
4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C1:y2=2px(p>0)的焦点F以及椭圆C2
y2
a2
+
y2
b2
=1,(a>b>0)
的上、下焦点及左、右顶点均在圆O:x2+y2=1上.
(Ⅰ)求抛物线C1和椭圆C2的标准方程;
(Ⅱ)过点F的直线交抛物线C1于A、B两不同点,交y轴于点N,已知
NA
=λ1
AF
, 
NB
 =λ2
BF
,求证:λ12为定值.
(Ⅲ)直线l交椭圆C2于P、Q两不同点,P、Q在x轴的射影分别为P'、Q',
OP
OQ
+
OP′
OQ′
 +1=0
,若点S满足:
OS
OP
 +
OQ
,证明:点S在椭圆C2上.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知抛物线C1:y2=4x,圆C2:(x-1)2+y2=1,过抛物线焦点F的直线l交C1于A,D两点(点A在x轴上方),直线l交C2于B,C两点(点B在x轴上方).
(Ⅰ)求|AB|•|CD|的值;
(Ⅱ)设直线OA、OB、OC、OD的斜率分别为m、n、p、q,且满足m+n+p+q=3
2
,并且|AB|,|BC|,|CD|成等差数列,求出所有满足条件的直线l的方程.

查看答案和解析>>

同步练习册答案