精英家教网 > 高中数学 > 题目详情

【题目】【选做题】本题包括A、B、C、D四小题,请选定其中两小题,并在相应的答题区域内作答.若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤.
(1)A.【选修4—1几何证明选讲】
如图,在△ABC中,∠ABC=90°,BDACD为垂足,EBC的中点,求证:∠EDC=∠ABD.

(2)B.【选修4—2:矩阵与变换】
已知矩阵A= 矩阵B的逆矩阵B1= ,求矩阵AB.
(3)【选修4—4:坐标系与参数方程】在平面直角坐标系xOy中,已知直线l的参数方程为 t为参数),椭圆C的参数方程为 为参数).设直线l与椭圆C相交于AB两点,求线段AB的长.
(4)D. 设a>0,|x﹣1|< ,|y﹣2|< ,求证:|2x+y﹣4|<a.

【答案】
(1)

解:由 可得

中点可得

可得

可得

因此

可得


(2)

解: ,因此


(3)

解:直线 方程化为普通方程为

椭圆 方程化为普通方程为

联立得 ,解得

因此


(4)

证明:由 可得


【解析】A、依题意,知∠BDC=90°,∠EDC=∠C,利用∠C+∠DBC=∠ABD+∠DBC=90°,可得∠ABD=∠C,从而可证得结论.
B、依题意,利用矩阵变换求得B=(B11= = ,再利用矩阵乘法的性质可求得答案.
C、分别化直线与椭圆的参数方程为普通方程,然后联立方程组,求出直线与椭圆的交点坐标,代入两点间的距离公式求得答案.
D、运用绝对值不等式的性质:|a+b|≤|a|+|b|,结合不等式的基本性质,即可得证.
【考点精析】解答此题的关键在于理解直线的参数方程的相关知识,掌握经过点,倾斜角为的直线的参数方程可表示为为参数),以及对椭圆的参数方程的理解,了解椭圆的参数方程可表示为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】袋子中放有大小和形状相同的小球若干,其中标号为0的小球1个,标号为1的小球1个,标号为2的小球2个.从袋子中不放回地随机抽取小球两个,每次抽取一个球,记第一次取出的小球标号为,第二次取出的小球标号为.

(1)记事件表示“”,求事件的概率;

(2)在区间内任取两个实数,求“事件恒成立”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂利用辐射对食品进行灭菌消毒,现准备在该厂附近建一职工宿舍,并对宿舍进行防辐射处理,建房防辐射材料的选用与宿舍到工厂距离有关.若建造宿舍的所有费用(万元)和宿舍与工厂的距离的关系为: .为了交通方便,工厂与宿舍之间还要修一条简易便道,已知修路每公里成本为万元,工厂一次性补贴职工交通费万元.为建造宿舍修路费用与给职工的补贴之和.

的表达式

宿舍应建在离工厂多远处,可使总费用最小,并求最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,已知以M为圆心的圆M:x2+y2﹣12x﹣14y+60=0及其上一点A(2,4).

(1)设圆N与x轴相切,与圆M外切,且圆心N在直线x=6上,求圆N的标准方程;
(2)设平行于OA的直线l与圆M相交于B、C两点,且BC=OA,求直线l的方程;
(3)设点T(t,0)满足:存在圆M上的两点P和Q,使得 ,求实数t的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,MNK分别是正方体ABCDA1B1C1D1的棱ABCDC1D1的中点.

求证:(1)AN∥平面A1MK

(2)平面A1B1C⊥平面A1MK.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,平面平面,四边形是全等的等腰梯形,其中,且,点的中点,点的中点.

(I)请在图中所给的点中找出两个点,使得这两个点所在直线与平面垂直,并给出证明

(II)求二面角的余弦值;

(III)在线段上是否存在点,使得平面?如果存在,求出的长度,如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}满足a3=2,前3项和为S3.

(1)求{an}的通项公式;

(2)设等比数列{bn}满足b1a1b4a15,求{bn}的前n项和Tn.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数(其中)的图象的两条相邻对称轴之间的距离为,且图象上一个最低点为.

(1)求函数的解析式;

(2)当时,求函数的值域;

(3)若方程上有两个不相等的实数根,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,设抛物线y2=2px(p>0)的焦点为F,抛物线上的点A到y轴的距离等于|AF|﹣1,

(1)求p的值;
(2)若直线AF交抛物线于另一点B,过B与x轴平行的直线和过F与AB垂直的直线交于点N,AN与x轴交于点M,求M的横坐标的取值范围.

查看答案和解析>>

同步练习册答案