精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系xOy中,以坐标原点为圆心且与直线mx﹣y﹣2m+1=0(m∈R)相切的所有圆中,半径最大的圆的标准方程为(
A.x2+y2=5
B.x2+y2=3
C.x2+y2=9
D.x2+y2=7

【答案】A
【解析】解:直线mx﹣y﹣2m+1=0过定点P(2,1),如图,

∴当圆与直线mx﹣y﹣2m+1=0切于P时,圆的半径最大为

此时圆的标准方程为x2+y2=5.

故选:A.

【考点精析】解答此题的关键在于理解直线与圆的三种位置关系的相关知识,掌握直线与圆有三种位置关系:无公共点为相离;有两个公共点为相交,这条直线叫做圆的割线;圆与直线有唯一公共点为相切,这条直线叫做圆的切线,这个唯一的公共点叫做切点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,直线l的参数方程为 (t为参数),在以坐标原点O为极点,x轴的正半轴为极轴的极坐标系中,曲线C的极坐标方程为ρ=2 cos( +θ).
(I)求直线l的普通方程和曲线C的直角坐标方程;
(Ⅱ)设直线l与曲线C相交于M,N两点,求|MN|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知四棱锥P﹣ABCD的三视图如图所示,则四棱锥P﹣ABCD的四个侧面中面积最大的是(
A.3
B.2
C.6
D.8

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2x+1,x∈N* , 若x0 , n∈N* , 使f(x0)+f(x0+1)+…+f(x0+n)=63成立,则称(x0 , n)为函数f(x)的一个“生成点”,函数f(x)的“生成点”共有(
A.2个
B.3个
C.4个
D.5个

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆M: =1(a>b>0)的离心率为 ,左焦点F1到直线 的距离为3,圆N的方程为(x﹣c)2+y2=a2+c2(c为半焦距),直线l:y=kx+m(k>0)与椭圆M和圆N均只有一个公共点,分别设为A,B.
(1)求椭圆M的方程和直线l的方程;
(2)在圆N上是否存在点P,使 ,若存在,求出P点坐标,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线Cy2=2pxp>0)上的点A(4,t)到其焦点F的距离为5.

(Ⅰ)求抛物线C的方程;

(Ⅱ)过点F作直线l,使得抛物线C上恰有三个点到直线1的距离为2,求直线1的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从甲、乙、丙、丁四位同学中选拔一位成绩较稳定的优秀选手,参加山东省职业院校技能大赛,在同样条件下经过多轮测试,成绩分析如表所示,根据表中数据判断,最佳人选为( ) 成绩分析表

平均成绩

96

96

85

85

标准差s

4

2

4

2


A.甲
B.乙
C.丙
D.丁

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设A(x1 , y1),B(x2 , y2)是椭圆 上的两点,已知向量 =( ), =( ),若 =0且椭圆的离心率e= ,短轴长为2,O为坐标原点.
(Ⅰ)求椭圆的方程;
(Ⅱ)试问:△AOB的面积是否为定值?如果是,请给予证明;如果不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=x3﹣2ex2+mx﹣lnx,记g(x)= ,若函数g(x)至少存在一个零点,则实数m的取值范围是(
A.(﹣∞,e2+ ]
B.(0,e2+ ]
C.(e2+ ,+∞]
D.(﹣e2 ,e2+ ]

查看答案和解析>>

同步练习册答案