精英家教网 > 高中数学 > 题目详情
7.不等式-x2-2x+3≥0的解集为(  )
A.{x|-1≤x≤3}B.{x|x≥3或x≤-1}C.{x|-3≤x≤1}D.{x|x≤-3或x≥1}

分析 由题意可得x2+2x-3≤0,用因式分解法可得,(x+3)(x-1)≤0,即可解出x的范围.

解答 解:∵-x2-2x+3≥0,
∴x2+2x-3≤0,即(x+3)(x-1)≤0,
解得-3≤x≤1.
∴不等式-x2-2x+3≥0的解集为{x|-3≤x≤1}.
故选:C.

点评 本题考查了一元二次不等式的解法,注意运用因式分解法,考查了运算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.一个几何体的三视图如图所示,则该几何体的外接球的表面积为(  )
A.$\frac{9π}{2}$B.$\frac{27π}{8}$C.36πD.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若cos($\frac{π}{4}$+α)=$\frac{1}{3}$,0<α<$\frac{π}{2}$,则sinα=$\frac{4-\sqrt{2}}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.若sin($\frac{π}{2}$+α)=-$\frac{3}{5}$,α∈(0,π),则sinα=$\frac{4}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在(2x+$\frac{1}{x^2}}$)6的展开式中,求:
(Ⅰ)第4项的二项式系数;   
(Ⅱ)常数项.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.函数f(x)=$\left\{\begin{array}{l}{2^x}-2,x≤1\\{log_2}(x-1),x>1\end{array}$,则f[f(${\frac{5}{2}})}$]=-$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知向量$\overrightarrow{m}$=($\sqrt{3}$sin$\frac{x}{4}$,1),$\overrightarrow{n}$=(cos$\frac{x}{4}$,cos2$\frac{x}{4}$),f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$.
(1)求函数f(x)的解析式及其单调递增区间;
(2)将f(x)的图象向右平移$\frac{2π}{3}$个单位长度得到g(x)的图象,若g(x)-k≤0在区间[0,$\frac{7π}{3}$]上恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设函数f(x)=$\left\{\begin{array}{l}{{3}^{-x}-2(x≤0)}\\{x-1(x>0)}\end{array}\right.$,若f(x0)>1,则x0的取值范围是(  )
A.(-1,1)B.(-1,+∞)C.(-∞,-1)∪(2,+∞)D.(-∞,-2)∪(0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若a=20.6,b=log30.6,c=0.62,则(  )
A.b>c>aB.a>b>cC.c>b>aD.a>c>b

查看答案和解析>>

同步练习册答案