13£®Èçͼ£¬ÍÖÔ²$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1£¨a£¾b£¾0£©$µÄ×ó½¹µãΪF£¬¹ýµãFµÄÖ±Ïß½»ÍÖÔ²ÓÚA£¬BÁ½µã£¬|AF|µÄ×î´óֵΪM£¬|BF|µÄ×îСֵΪm£¬Âú×ã$M•m=\frac{3}{4}{a^2}$£®
£¨¢ñ£©ÈôÏ߶ÎAB´¹Ö±ÓÚxÖáʱ£¬|AB|=$\frac{3}{2}$£¬ÇóÍÖÔ²µÄ·½³Ì£»
£¨¢ò£© ÉèÏ߶ÎABµÄÖеãΪG£¬ABµÄ´¹Ö±Æ½·ÖÏßÓëxÖáºÍyÖá·Ö±ð½»ÓÚD£¬EÁ½µã£¬OÊÇ×ø±êÔ­µã£¬¼Ç¡÷GFDµÄÃæ»ýΪS1£¬¡÷OEDµÄÃæ»ýΪS2£¬Çó$\frac{{2{S_1}{S_2}}}{{{S_1}^2+{S_2}^2}}$µÄÈ¡Öµ·¶Î§£®

·ÖÎö £¨¢ñ£© ÉèF£¨-c£¬0£©£¨c£¾0£©£¬Ôò¸ù¾ÝÍÖÔ²ÐÔÖʵÃM=a+c£¬m=a-c£¬½áºÏÌõ¼þ£¬½â·½³Ì¿ÉµÃa£¬c£¬b£¬½ø¶øµÃµ½ÍÖÔ²·½³Ì£»
£¨¢ò£©Éè³öÍÖÔ²·½³ÌΪ$\frac{{x}^{2}}{4{c}^{2}}$+$\frac{{y}^{2}}{3{c}^{2}}$=1£¬ÉèÖ±ÏßABµÄ·½³ÌΪy=k£¨x+c£©£¬²¢ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬´úÈëÍÖÔ²·½³Ì£¬ÓÉΤ´ï¶¨ÀíºÍÖеã×ø±ê¹«Ê½¿ÉµÃGµÄ×ø±ê£¬ÔÙÓÉÈý½ÇÐÎÏàËƵÄÐÔÖÊ£¬¿ÉµÃÃæ»ý±ÈΪ¶ÔÓ¦±ßµÄƽ·½±È£¬½áºÏ²»µÈʽµÄÐÔÖʼ´¿ÉµÃµ½ËùÇó·¶Î§£®

½â´ð ½â£º£¨¢ñ£© ÉèF£¨-c£¬0£©£¨c£¾0£©£¬Ôò¸ù¾ÝÍÖÔ²ÐÔÖʵÃ
M=a+c£¬m=a-c¶øM•m=$\frac{3}{4}$a2£¬
ËùÒÔÓÐa2-c2=$\frac{3}{4}$a2£¬¼´a2=4c2£¬¼´a=2c£¬
ÓÖ$\frac{{2{b^2}}}{a}=\frac{3}{2}$ÇÒa2=b2+c2£¬
µÃ$a=1£¬{b^2}=\frac{3}{4}$£¬
Òò´ËÍÖÔ²µÄ·½³ÌΪ£º${x^2}+\frac{{4{y^2}}}{3}=1$£»
£¨¢ò£©ÓÉ£¨¢ñ£©¿ÉÖªa=2c£¬b=$\sqrt{{a}^{2}-{c}^{2}}$=$\sqrt{3}$c£¬ÍÖÔ²µÄ·½³ÌΪ$\frac{{x}^{2}}{4{c}^{2}}$+$\frac{{y}^{2}}{3{c}^{2}}$=1£¬
¸ù¾ÝÌõ¼þÖ±ÏßABµÄбÂÊÒ»¶¨´æÔÚÇÒ²»ÎªÁ㣬ÉèÖ±ÏßABµÄ·½³ÌΪy=k£¨x+c£©£¬
²¢ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬
ÔòÓÉ$\left\{\begin{array}{l}y=k£¨x+c£©\\ \frac{x^2}{{4{c^2}}}+\frac{y^2}{{3{c^2}}}=1\end{array}\right.$ÏûÈ¥y²¢ÕûÀíµÃ£¬£¨4k2+3£©x2+8ck2x+4k2c2-12c2=0£¬
´Ó¶øÓÐ${x_1}+{x_2}=-\frac{{8c{k^2}}}{{4{k^2}+3}}£¬{y_1}+{y_2}=k£¨{x_1}+{x_2}+2c£©=\frac{6ck}{{4{k^2}+3}}$£¬
ËùÒÔ$G£¨-\frac{{4c{k^2}}}{{4{k^2}+3}}£¬\frac{3ck}{{4{k^2}+3}}£©$£®
ÒòΪDG¡ÍAB£¬ËùÒÔ$\frac{{\frac{3ck}{{4{k^2}+3}}}}{{-\frac{{4c{k^2}}}{{4{k^2}+3}}-{x_D}}}•k=-1$£¬¼´${x_D}=-\frac{{c{k^2}}}{{4{k^2}+3}}$£®
ÓÉRt¡÷FGDÓëRt¡÷EODÏàËÆ£¬
ËùÒÔ$\frac{S_1}{S_2}=\frac{{G{D^2}}}{{O{D^2}}}=\frac{{{{£¨-\frac{{4c{k^2}}}{{4{k^2}+3}}+\frac{{c{k^2}}}{{4{k^2}+3}}£©}^2}+{{£¨\frac{3ck}{{4{k^2}+3}}£©}^2}}}{{{{£¨-\frac{{c{k^2}}}{{4{k^2}+3}}£©}^2}}}=9+\frac{9}{k^2}£¾9$£®
Áî$\frac{S_1}{S_2}=t$£¬Ôòt£¾9£¬
´Ó¶ø$\frac{{2{S_1}{S_2}}}{{{S_1}^2+{S_2}^2}}=\frac{2}{{t+\frac{1}{t}}}£¼\frac{2}{{9+\frac{1}{9}}}=\frac{9}{41}$£¬
¼´$\frac{{2{S_1}{S_2}}}{{{S_1}^2+{S_2}^2}}$µÄÈ¡Öµ·¶Î§ÊÇ$£¨0£¬\frac{9}{41}£©$£®

µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ·½³ÌµÄÇ󷨣¬×¢ÒâÔËÓÃÍÖÔ²µÄÐÔÖÊ£¬¿¼²éÖ±ÏߺÍÍÖÔ²·½³ÌÁªÁ¢£¬ÔËÓÃΤ´ï¶¨ÀíºÍÖ±Ïß´¹Ö±µÄÌõ¼þ£ºÐ±ÂÊÖ®»ýΪ-1£¬¿¼²éÈý½ÇÐÎÏàËƵÄÐÔÖÊ£ºÈý½ÇÐεÄÃæ»ýÖ®±ÈΪÏàËƱȵÄƽ·½£¬¿¼²é»¯¼òÕûÀíµÄÔËËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

7£®ÒÑÖªF1£¬F2·Ö±ðÊÇË«ÇúÏßx2-$\frac{{y}^{2}}{{b}^{2}}$=1µÄ×ó¡¢ÓÒ½¹µã£¬AÊÇÇúÏßÔÚµÚÒ»ÏóÏÞÄڵĵ㣬Èô|AF2|=2£¬ÇÒ¡ÏF1AF2=45¡ã£¬ÑÓ³¤AF2½»Ë«ÇúÏßÓÒÖ§ÓÚµãB£¬Ôò|BF2|=2$\sqrt{2}$-2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

4£®ÉèÍÖÔ²$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄÓÒ¶¥µãΪA£¬×󶥵ãΪB£¬×ó½¹µãΪF£¬MÊÇÍÖÔ²ÉÏÒ»µã£¬ÇÒFM¡ÍxÖᣬÈô|AB|=4|FM|£¬ÄÇô¸ÃÍÖÔ²µÄÀëÐÄÂÊΪ$\frac{\sqrt{2}}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®ÍÖÔ²C£º$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1£¨a£¾b£¾0£©µÄ×ó¡¢ÓÒ½¹µã·Ö±ðÊÇF1£¬F2£¬ÀëÐÄÂÊΪ$\frac{{\sqrt{3}}}{2}$£¬¹ýF1ÇÒ´¹Ö±ÓÚxÖáµÄÖ±Ïß±»ÍÖÔ²C½ØµÃµÄÏ߶γ¤Îª1£®
£¨¢ñ£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨¢ò£©µãPÊÇÍÖÔ²CÉϳý³¤Öá¶ËµãÍâµÄÈÎÒ»µã£¬Á¬½ÓPF1£¬PF2£®Éè¡ÏF1PF2µÄ½Çƽ·ÖÏßPM½»CµÄ³¤ÖáÓÚµãM£¨m£¬0£©£¬ÇómµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

8£®ÉèÍÖÔ²E£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄÓÒ¶¥µãΪA¡¢ÓÒ½¹µãΪF£¬BΪÍÖÔ²EÔÚµÚ¶þÏóÏÞÉϵĵ㣬ֱÏßBO½»ÍÖÔ²EÓÚµãC£¬ÈôÖ±ÏßBFƽ·ÖÏ߶ÎAC£¬ÔòÍÖÔ²EµÄÀëÐÄÂÊÊÇ$\frac{1}{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

18£®ÒÑÖªcosxcos£¨x+y£©+sinxsin£¨x+y£©=-$\frac{3}{5}$£¬yÊǵڶþÏóÏ޽ǣ¬Ôòtan2y=$\frac{24}{7}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®ÒÑÖªÒ»¸öÍÖÔ²ÖÐÐÄÔÚÔ­µã£¬½¹µãÔÚͬһ×ø±êÖáÉÏ£¬½¹¾àΪ$2\sqrt{13}$£®Ò»Ë«ÇúÏߺÍÕâÍÖÔ²Óй«¹²½¹µã£¬ÇÒË«ÇúÏßµÄʵ°ëÖ᳤±ÈÍÖÔ²µÄ³¤°ëÖ᳤С4£¬Ë«ÇúÏßÀëÐÄÂÊÓëÍÖÔ²ÀëÐÄÂÊÖ®±ÈΪ7£º3£¬ÇóÍÖÔ²ºÍË«ÇúÏߵıê×¼·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®ÒÑ֪ȫ¼¯U=R£¬·Ç¿Õ¼¯ºÏA=$\{x|-2¡Ü\frac{x-1}{3}-1¡Ü2\}$£¬B={x|£¨x-1+m£©£¨x-1-m£©¡Ü0}£¨m£¾0£©
£¨¢ñ£©µ±m=1ʱ£¬Çó£¨∁UB£©¡ÉA£»
£¨¢ò£©ÃüÌâp£ºx¡ÊA£¬ÃüÌâq£ºx¡ÊB£¬ÈôqÊÇpµÄ±ØÒª²»³ä·ÖÌõ¼þ£¬ÇóʵÊýmµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®ÔÚ¿Õ¼äËıßÐÎABCDÖУ¬E£¬F·Ö±ðÊÇAB£¬ADµÄÖеã
£¨1£©ÇóÖ¤£ºEF¡ÎƽÃæBCD
£¨2£©ÈôAB=AD£¬BC=CD£¬ÇóÖ¤£ºAC¡ÍBD£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸