精英家教网 > 高中数学 > 题目详情

【题目】在直角坐标系中,以原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线,直线l的参数方程为:t为参数),直线l与曲线C分别交于两点.

1)写出曲线C和直线l的普通方程;

2)若点,求的值.

【答案】(1);(2)

【解析】

1)将两边平方,用代入,即可求出曲线直角坐标方程;参数方程用代入法消去参数,可求得直线的普通方程;

2)直线化为过具有几何意义的参数方程,代入曲线的方程,设两点对应的参数分别为,根据韦达定理,得出的关系式,结合参数几何意义,将所求的量用表示,即可求解.

1

.

2)注意到在直线l上,直线倾斜角为

解得直线参数方程为为参数),

联立C的直角坐标方程与l的参数方程,

整理得,设方程的解为

异号.

不妨设,

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】羽毛球比赛中,首局比赛由裁判员采用抛球的方法决定谁先发球,在每回合争夺中,赢方得1分且获得发球权.每一局中,获胜规则如下:①率先得到21分的一方赢得该局比赛;②如果双方得分出现,需要领先对方2分才算该局获胜;③如果双方得分出现,先取得30分的一方该局获胜.现甲、乙两名运动员进行对抗赛,在每回合争夺中,若甲发球时,甲得分的概率为;乙发球时,甲得分的概率为

(Ⅰ)若,记甲以赢一局的概率为,试比较的大小;

(Ⅱ)根据对以往甲、乙两名运动员的比赛进行数据分析,得到如下列联表部分数据.若不考虑其它因素对比赛的影响,并以表中两人发球时甲得分的频率作为的值.

甲得分

乙得分

总计

甲发球

50

100

乙发球

60

90

总计

190

①完成列联表,并判断是否有95%的把握认为比赛得分与接、发球有关

②已知在某局比中,双方战成,且轮到乙发球,记双方再战回合此局比赛结束,求的分布列与期望.

参考公式:,其中

临界值表供参考:

0.15

0.10

0.05

0.010

0.001

2.072

2.706

3.841

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知椭圆过点,且离心率.

1)求椭圆的方程;

2)直线的斜率为,直线与椭圆交于两点,求的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知圆锥的顶点为S,底面圆O的两条直径分别为AB和CD,且AB⊥CD,若平面平面.现有以下四个结论:

①AD∥平面SBC;

③若E是底面圆周上的动点,则△SAE的最大面积等于△SAB的面积;

与平面SCD所成的角为45°.

其中正确结论的序号是__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱台中,GH分别为上的点,平面平面.

1)证明:平面平面

2)若,求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)若的最大值为,求的值;

2)若存在实数,使得,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在极坐标系中,曲线的极坐标方程为,以极点为原点,极轴为轴的非负半轴建立平面直角坐标系,直线的参数方程为为参数, ).

(1)求曲线的直角坐标方程和直线的普通方程;

(2)若曲线上的动点到直线的最大距离为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数fx则下列结论错误的是(

A.函数fx)的值域为RB.函数f|x|)为偶函数

C.函数fx)为奇函数D.函数fx)是定义域上的单调函数

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某部影片的盈利额(即影片的票房收入与固定成本之差)记为,观影人数记为,其函数图象如图(1)所示.由于目前该片盈利未达到预期,相关人员提出了两种调整方案,图(2)、图(3)中的实线分别为调整后的函数图象.

给出下列四种说法:

①图(2)对应的方案是:提高票价,并提高成本;

②图(2)对应的方案是:保持票价不变,并降低成本;

③图(3)对应的方案是:提高票价,并保持成本不变;

④图(3)对应的方案是:提高票价,并降低成本.

其中,正确的说法是____________.(填写所有正确说法的编号)

查看答案和解析>>

同步练习册答案