【题目】在直角坐标系中,以原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线,直线l的参数方程为:(t为参数),直线l与曲线C分别交于两点.
(1)写出曲线C和直线l的普通方程;
(2)若点,求的值.
科目:高中数学 来源: 题型:
【题目】羽毛球比赛中,首局比赛由裁判员采用抛球的方法决定谁先发球,在每回合争夺中,赢方得1分且获得发球权.每一局中,获胜规则如下:①率先得到21分的一方赢得该局比赛;②如果双方得分出现,需要领先对方2分才算该局获胜;③如果双方得分出现,先取得30分的一方该局获胜.现甲、乙两名运动员进行对抗赛,在每回合争夺中,若甲发球时,甲得分的概率为;乙发球时,甲得分的概率为.
(Ⅰ)若,记“甲以赢一局”的概率为,试比较与的大小;
(Ⅱ)根据对以往甲、乙两名运动员的比赛进行数据分析,得到如下列联表部分数据.若不考虑其它因素对比赛的影响,并以表中两人发球时甲得分的频率作为,的值.
甲得分 | 乙得分 | 总计 | |
甲发球 | 50 | 100 | |
乙发球 | 60 | 90 | |
总计 | 190 |
①完成列联表,并判断是否有95%的把握认为“比赛得分与接、发球有关”?
②已知在某局比中,双方战成,且轮到乙发球,记双方再战回合此局比赛结束,求的分布列与期望.
参考公式:,其中.
临界值表供参考:
0.15 | 0.10 | 0.05 | 0.010 | 0.001 | |
2.072 | 2.706 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知圆锥的顶点为S,底面圆O的两条直径分别为AB和CD,且AB⊥CD,若平面平面.现有以下四个结论:
①AD∥平面SBC;
②;
③若E是底面圆周上的动点,则△SAE的最大面积等于△SAB的面积;
④与平面SCD所成的角为45°.
其中正确结论的序号是__________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在极坐标系中,曲线的极坐标方程为,以极点为原点,极轴为轴的非负半轴建立平面直角坐标系,直线的参数方程为(为参数, ).
(1)求曲线的直角坐标方程和直线的普通方程;
(2)若曲线上的动点到直线的最大距离为,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)则下列结论错误的是( )
A.函数f(x)的值域为RB.函数f(|x|)为偶函数
C.函数f(x)为奇函数D.函数f(x)是定义域上的单调函数
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某部影片的盈利额(即影片的票房收入与固定成本之差)记为,观影人数记为,其函数图象如图(1)所示.由于目前该片盈利未达到预期,相关人员提出了两种调整方案,图(2)、图(3)中的实线分别为调整后与的函数图象.
给出下列四种说法:
①图(2)对应的方案是:提高票价,并提高成本;
②图(2)对应的方案是:保持票价不变,并降低成本;
③图(3)对应的方案是:提高票价,并保持成本不变;
④图(3)对应的方案是:提高票价,并降低成本.
其中,正确的说法是____________.(填写所有正确说法的编号)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com