精英家教网 > 高中数学 > 题目详情

【题目】已知非常数列满足,若,则( )

A.存在,对任意,都有为等比数列

B.存在,对任意,都有为等差数列

C.存在,对任意,都有为等差数列

D.存在,对任意,都有为等比数列

【答案】B

【解析】

本题先将递推式进行变形,然后令,根据题意有常数,且,将递推式通过换元法简化为,两边同时减去,可得,此时逐步递推可得.根据题意有,则当时,可得到数列是一个等差数列,由此可得正确选项.

解:由题意,得.
,则
为非零常数且
均为非零常数,
∴常数,且.
.
两边同时减去,可得

∵常数,且
,且.

∵数列是非常数数列,

则当,即,即,即时,
.
此时数列很明显是一个等差数列.
∴存在,只要满足为非零,且时,对任意,都有数列为等差数列.
故选:B.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,直四棱柱的底面是边长为2的菱形,.分别为的中点.平面与棱所在直线交于点.

1)求证:平面平面

2)求直线与平面所成角的正弦值;

3)判断点是否与点重合.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知斜三棱柱.

1)求的长;

2)求与面所成的角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近年来,随着网络的普及和智能手机的更新换代,各种方便的相继出世,其功能也是五花八门.某大学为了调查在校大学生使用的主要用途,随机抽取了名大学生进行调查,各主要用途与对应人数的结果统计如图所示,现有如下说法:

①可以估计使用主要听音乐的大学生人数多于主要看社区、新闻、资讯的大学生人数;

②可以估计不足的大学生使用主要玩游戏;

③可以估计使用主要找人聊天的大学生超过总数的.

其中正确的个数为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某软件公司新开发一款学习软件,该软件把学科知识设计为由易到难共12关的闯关游戏.为了激发闯关热情,每闯过一关都奖励若干慧币(一种网络虚拟币).该软件提供了三种奖励方案:第一种,每闯过一关奖励80慧币;第二种,闯过第一关奖励8慧币,以后每一关比前一关多奖励8慧币;第三种,闯过第一关奖励1慧币,以后每一关比前一关奖励翻一番(即增加1倍).游戏规定:闯关者须于闯关前任选一种奖励方案.已知一名闯关者冲关数一定超过3关但不会超过9关,为了得到更多的慧币,他应如何选择奖励方案?

A.选择第一种奖励方案B.选择第二种奖励方案

C.选择第三种奖励方案D.选择的奖励方案与其冲关数有关

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中.

(1)若是函数的导函数的零点,求的单调区间;

(2)若不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】红铃虫是棉花的主要害虫之一,能对农作物造成严重伤害,每只红铃虫的平均产卵数y和平均温度x有关,现收集了以往某地的7组数据,得到下面的散点图及一些统计量的值.(表中

平均温度

21

23

25

27

29

32

35

平均产卵数/

7

11

21

24

66

115

325

27.429

81.286

3.612

40.182

147.714

1)根据散点图判断,(其中自然对数的底数)哪一个更适宜作为平均产卵数y关于平均温度x的回归方程类型?(给出判断即可,不必说明理由)并由判断结果及表中数据,求出yx的回归方程.(计算结果精确到小数点后第三位)

2)根据以往统计,该地每年平均温度达到28℃以上时红铃虫会造成严重伤害,需要人工防治,其他情况均不需要人工防治,记该地每年平均温度达到28℃以上的概率为.

①记该地今后5年中,恰好需要3次人工防治的概率为,求的最大值,并求出相应的概率p.

②当取最大值时,记该地今后5年中,需要人工防治的次数为X,求X的数学期望和方差.

附:线性回归方程系数公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为缓解日益拥堵的交通状况,不少城市实施车牌竞价策略,以控制车辆数量.某地车牌竞价的原则是:①“盲拍”,即所有参与竞拍的人都是网络报价,每个人并不知晓其他人的报价,也不知道参与当期竞拍的总人数;②竞价时间截止后,系统根据当期车牌配额,按照竞价人的出价从高到低分配名额.某人拟参加201810月份的车牌竞价,他为了预测最低成交价,根据竞拍网站的公告,统计了最近5个月参与竞拍的人数(见表):

月份

2018.04

2018.05

2018.06

2018.07

2018.08

月份编号t

1

2

3

4

5

竞拍人数y(万人)

0.5

0.6

m

1.4

1.7

1)由收集数据的散点图发现,可以线性回归模拟竞拍人数y(万人)与月份编号t之间的相关关系.现用最小二乘法求得y关于t的回归方程为,请求出表中的m的值并预测20189月参与竞拍的人数;

2)某市场调研机构对200位拟参加20189月车牌竞拍人员的报价价格进行了一个抽样调查,得到如下一个频数表:

报价区间(万元)

[12)

[23)

[34)

[45)

[56)

[67]

频数

20

60

60

30

20

10

i)求这200位竞拍人员报价的平均值(同一区间的报价可用该价格区间的中点值代替)

ii)假设所有参与竞拍人员的报价X服从正态分布,且(i)中所求的样本平均数的估值,.20189月实际发放车牌数量为3174,请你合理预测(需说明理由)竞拍的最低成交价.参考公式及数据:若随机变量Z服从正态分布,则:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现代足球运动是世上开展得最广泛、影响最大的运动项目,有人称它为世界第一运动.早在2000多年前的春秋战国时代,就有了一种球类游戏蹴鞠,后来经过阿拉伯人传到欧洲,发展成现代足球.18631026日,英国人在伦敦成立了世界上第一个足球运动组织——英国足球协会,并统一了足球规则.人们称这一天是现代足球的诞生日.如图所示,足球表面是由若干黑色正五边形和白色正六边形皮围成的,我们把这些正五边形和正六边形都称为足球的面,任何相邻两个面的公共边叫做足球的棱.已知足球表面中的正六边形的面为20个,则该足球表面中的正五边形的面为______个,该足球表面的棱为______条.

查看答案和解析>>

同步练习册答案