精英家教网 > 高中数学 > 题目详情
已知直线l1:x-y=0,l2:x+y=0,点P是线性约束条件
x-y≥0
x+y≥0
所表示区域内一动点,PM⊥l1,PN⊥l2,垂足分别为M、N,且S△OMN=
1
2
(O为坐标原点).
(Ⅰ)求动点P的轨迹方程;
(Ⅱ)是否存在过点(2,0)的直线l与(Ⅰ)中轨迹交于点A、B,线段AB的垂直平分线交y轴于Q点,且使得△ABQ是等边三角形.若存在,求出直线l的方程,若不存在,说明理由.
(Ⅰ)设P(x0,y0),由题意有l1⊥l2,且PM⊥l1,PN⊥l2
∴四边形PMON是矩形,
∴SPMON=2S△MON=|PM|•|PN|=1,
|x0-y0|
2
|x0+y0|
2
=1

∴|x02-y02|=2,
∵P在
x-y≥0
x+y≥0
所表示的区域内,
∴x02-y02=2(x0>0),
所以求得动点P的轨迹方程为x2-y2=2(x>0).
(Ⅱ)假设存在满足条件的直线l.
当l⊥x轴时,有l:x=2.
此时|AB|=2
2
|AQ|=|BQ|=
6
,△ABQ不是正三角形.
当l不垂直x轴时,设l:y=k(x-2),
并设A(x1,y1),B(x2,y2),
x2-y2=2
y=k(x-2)

得(1-k2)x2+4k2-2=0,
△=8k2+8>0恒成立,
∵l与双曲线的右支交于两点,
∴|k|>1.
x1+x2=
4k2
k2-1
y1+y2=
4k
k2-1


∴线段AB的中点M( 
2k2
k2-1
2k
k2-1
)

∴线段AB的垂直平分线为y-
2k
k2-1
=-
1
k
(x-
2k2
k2-1
)

Q(0,
4k
k2-1
)

∵△ABQ是等边三角形,
|MQ|=
3
2
|AB|
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知直线l1:x+y-2=0和l2:x-7y-4=0,过原点O的直线与L1、L2分别交A、B两点,若O是线段AB的中点,求直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l1:x-y+1=0和直线l2:2x+y+2=0的交点为P.
(1)求交点P的坐标;
(2)求过点P且与直线2x-3y-1=0平行的直线l3的方程;
(3)若过点P的直线l4被圆C:x2+y2-4x+4y-17=0截得的弦长为8,求直线l4的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l1:x+y+1=0,l2:2x+2y-1=0,则l1,l2之间的距离为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l1:x-y+C1=0,C1=
2
,l2:x-y+C2=0,l3:x-y+C3=0,…,ln:x-y+Cn=0(其中C1<C2<C3<…<Cn),当n≥2时,直线ln-1与ln间的距离为n.
(1)求Cn
(2)求直线ln-1:x-y+Cn-1=0与直线ln:x-y+Cn=0及x轴、y轴围成图形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l1:x+y-3=0,l2:x-y-1=0.
(Ⅰ)求过直线l1与l2的交点,且垂直于直线l3:2x+y-1=0的直线方程;
(Ⅱ)过原点O有一条直线,它夹在l1与l2两条直线之间的线段恰被点O平分,求这条直线的方程.

查看答案和解析>>

同步练习册答案