精英家教网 > 高中数学 > 题目详情

如下图所示,梯形ABCD中,AB∥CD,且AB=2CD,E,F分别是AD,BC的中点.

(1)若设=e1,=e2,以e1,e2为基底表示

(2)若设=z1,=z2,试以z1,z2为基底表示.

解:(1)∵AB=2CD,且AB∥CD,∴=e1, =-e1.∵E、F分别是AD、BC的中点,∴=+)=e1+e1)=e1, =+=e2+e1,  =e2+e1-e1=e2-e1.

(2)设=a,则=2a.∵=z1,

∴z1= (a+2a)=a.

a=z1,即=z1.

=-z1,=z1.

=+,

=-=z2-z1,=-= z2-z1.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知某几何体的直观图和三视图如下图所示,其正视图为矩形,左视图为等腰直角三角形,俯视图为直角梯形.
(Ⅰ)证明:BN⊥平面C1B1N;
(Ⅱ)求二面角C-NB1-C1的余弦值;M为AB中点,在线段CB上是否存在一点P,使得MP∥平面CNB1,若存在,求出BP的长;若不存在,请说明理由.
精英家教网精英家教网

查看答案和解析>>

科目:高中数学 来源: 题型:

已知某几何体的直观图和三视图如下图所示,其正视图为矩形,侧视图为等腰直角三角形,俯视图为直角梯形
(1)求证:BC∥平面C1B1N;
(2)求证:BN⊥平面C1B1N;
(3)设M为AB中点,在BC边上找一点P,使MP∥平面CNB1,并求
BPPC
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知某几何体的直观图和三视图如下图所示,其正视图为矩形,侧视图为等腰直角三角形,俯视图为直角梯形.
(Ⅰ)证明:BN⊥平面C1B1N;
(Ⅱ)设直线C1N与平面CNB1所成的角为θ,求cosθ的值;
(Ⅲ)M为AB中点,在CB上是否存在一点P,使得MP∥平面CNB1,若存在,求出BP的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:设计必修二数学北师版 北师版 题型:068

如下图所示,梯形ABCD中,AB∥CD,AB=4 cm,CD=2 cm,∠DAB=30°,AD=3 cm,试画出它的直观图.

查看答案和解析>>

同步练习册答案