精英家教网 > 高中数学 > 题目详情

【题目】某宾馆在装修时,为了美观,欲将客房的窗户设计成半径为的圆形,并用四根木条将圆分成如图所示的9个区域,其中四边形为中心在圆心的矩形,现计划将矩形区域设计为可推拉的窗口.

1)若窗口为正方形,且面积大于(木条宽度忽略不计),求四根木条总长的取值范围;

2)若四根木条总长为,求窗口面积的最大值.

【答案】12

【解析】

试题(1)长度与面积关系问题,可以考虑利用解不等式求范围,先根据直线与圆位置关系得弦长与圆心到直线距离(即正方形边长一半)关系,再根据面积大于得一根木条长范围,注意四根木条将圆分成9个区域的隐含条件:2)思路为长度一定,求面积最值,可以考虑利用基本不等式求最值,设所在木条长为所在木条长为,则,而圆中垂径定理得,因此

试题解析:解(1)设一根木条长为,则正方形的边长为

因为,所以,即

又因为四根木条将圆分成9个区域,所以

所以;

2)(方法一)设所在木条长为,则所在木条长为

因为,所以

,得,或(舍去),或(舍去)

列表如下:






+

0

-



极大值


所以当时,,即

(方法二)设所在木条长为所在木条长为

由条件,,即

因为,所以,从而

由于

因为

当且仅当时,

答:窗口面积的最大值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在倡导低碳、节能减排政策的推动下,越来越多的消费者选择购买新能源汽车.某品牌新能源汽车的行驶里程x(万公里)与该里程内维修保养的总费用y(千元)的统计数据如下:

1

2

3

4

5

6

0.8

1.8

3.3

4.5

4.7

6.8

1)根据表中数据建立y关于x的回归方程为.我们认为,若残差绝对值,则该数据为可疑数据,请找出上表中的可疑数据;

2)经过确认,数据采集有误,(1)中可疑数据的维修保养总费用应增加0.7千元.请重新利用线性回归模型拟合数据.(精确到0.01

附:..

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从星期一到星期六安排甲、乙、丙三人值班,每人值2天班,如果甲不安排在星期一,乙不安排在星期六,那么值班方案种数为 .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】13分){an}是公比为正数的等比数列a1=2a3=a2+4

)求{an}的通项公式;

)设{bn}是首项为1,公差为2的等差数列,求数列{an+bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,底面 ABCD为矩形,侧面为正三角形,且平面平面 EPD 中点,AD=2.

(1)证明平面AEC丄平面PCD;

(2)若二面角的平面角满足,求四棱锥 的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知焦距为2的椭圆的右顶点为,直线与椭圆交于两点(的左边),轴上的射影为,且四边形是平行四边形.

1)求椭圆的方程;

2)斜率为的直线与椭圆交于两个不同的点

i)若直线过原点且与坐标轴不重合,是直线上一点,且是以为直角顶点的等腰直角三角形,求的值;

ii)若是椭圆的左顶点,是直线上一点,且,点轴上异于点的点,且以为直径的圆恒过直线的交点,求证:点是定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列四个结论:

两条直线和同一个平面垂直,则这两条直线平行;

两条直线没有公共点,则这两条直线平行;

两条直线都和第三条直线垂直,则这两条直线平行;

一条直线和一个平面内任意直线没有公共点,则这条直线和这个平面平行.

其中正确的个数为(

A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P—ABCD中,PA⊥平面ABCD,四边形ABCD为正方形,AB4PA3,点APD上的射影为点G,点EAB上,平面PEC⊥平面PDC.

1)求证:AG∥平面PEC

2)求AE的长;

3)求二面角E—PC—A的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】砂糖橘是柑橘类的名优品种,因其味甜如砂糖故名.某果农选取一片山地种植砂糖橘,收获时,该果农随机选取果树20株作为样本测量它们每一株的果实产量(单位:kg),获得的所有数据按照区间(40,45],(45,50],(50,55],(55,60]进行分组,得到频率分布直方图如图所示.已知样本中产量在区间(45,50]上的果树株数是产量在区间(50,60]上的果树株数的.

(1)a,b的值;

(2)从样本中产量在区间(50,60]上的果树里随机抽取两株,求产量在区间(55,60]上的果树至少有一株被抽中的概率.

查看答案和解析>>

同步练习册答案