精英家教网 > 高中数学 > 题目详情

 已知是函数的一个极值点.

(1)求的值;

(2)任意时,证明:

解析:(1)

因为处取得极值,所以,所以

经检验,满足处取得极值,

所以

(2)证明:由(1)知,

,则

0

(0,1)

1

(1,2)

2

-

0

+

-2

递减

极小值

递增

0

处取得极小值,该极小值为上的最小值,

在区间上的最大值为0,最小值为

对于,有

所以,即。 

练习册系列答案
相关习题

科目:高中数学 来源:2014届四川达州第一中学高二下学期第一次月考文科数学试卷(解析版) 题型:解答题

已知是函数的一个极值点,其中

(1)求的关系式;

(2)求的单调区间;

(3)设函数函数g(x)= ;试比较g(x)与的大小。

 

查看答案和解析>>

科目:高中数学 来源:2012-2013学年山东师大附中高三12月(第三次)模拟检测理科数学试卷(解析版) 题型:解答题

(本题满分12分)已知是函数的一个极值点. 

(Ⅰ)求的值;

(Ⅱ)当时,证明:

 

查看答案和解析>>

科目:高中数学 来源:2013届浙江省宁波万里国际学校高二下期中文科数学试卷(解析版) 题型:解答题

已知是函数的一个极值点,其中

(1)求的关系式;        

(2)求的单调区间;

(3)当时,函数的图象上任意一点的切线斜率恒大于,求的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年浙江省高三上学期第三次月考数学文卷 题型:解答题

(本小题满分15分)

 已知是函数的一个极值点,其中

(Ⅰ)求的关系表达式;

(Ⅱ)求的单调区间;

(Ⅲ)当时,函数的图象上任意一点的切线斜率恒大于,求实数的取值范围。

 

查看答案和解析>>

科目:高中数学 来源:2013届广东省高二下学期第一次月考理科数学试卷 题型:解答题

(本小题满分14分)

已知是函数的一个极值点,其中

(1)求的关系式;

(2)求的单调区间;

(3)当时,函数的图象上任意一点的切线斜率恒大于3,求的取值范围.

 

查看答案和解析>>

同步练习册答案