精英家教网 > 高中数学 > 题目详情

【题目】动直线)与圆交于点,则弦最短为( )

A. B. C. D.

【答案】D

【解析】分析:因为直线经过(2,﹣2),因为圆C截得的弦AB最短,则和AB垂直的直径必然过此点,则求出此直径所在直线的方程,根据两直线垂直得到两条直线的斜率乘积为﹣1,即可求出m值,然后利用勾股定理即可求出最短弦.

详解:由直线l:可知直线l过(2,﹣2);

因为圆C截得的弦AB最短,则和AB垂直的直径必然过此点,

且由圆C化简得

则圆心坐标为(1,2)

然后设这条直径所在直线的解析式为l1:y=mx+b,

把(2,﹣2)和(1,2)代入求得y=﹣4x+6,

因为直线l1和直线AB垂直,两条直线的斜率乘积为﹣1,所以得m=﹣4,

即直线

最短为

故选:D.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知,其中.

(Ⅰ)当时,求函数的单调区间;

(Ⅱ)若恒成立,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近年来,随着我国汽车消费水平的提高,二手车流通行业得到迅猛发展.某汽车交易市场对2017年成交的二手车交易前的使用时间(以下简称“使用时间”)进行统计,得到频率分布直方图如图1.

图1 图2

(1)记“在年成交的二手车中随机选取一辆,该车的使用年限在”为事件试估计的概率;

(2)根据该汽车交易市场的历史资料,得到散点图如图2,其中(单位:年)表示二手车的使用时间,(单位:万元)表示相应的二手车的平均交易价格.由散点图看出,可采用作为二手车平均交易价格关于其使用年限的回归方程,相关数据如下表(表中):

5.5

8.7

1.9

301.4

79.75

385

①根据回归方程类型及表中数据,建立关于的回归方程;

②该汽车交易市场对使用8年以内(含8年)的二手车收取成交价格的佣金,对使用时间8年以上(不含8年)的二手车收取成交价格的佣金.在图1对使用时间的分组中,以各组的区间中点值代表该组的各个值.若以2017年的数据作为决策依据,计算该汽车交易市场对成交的每辆车收取的平均佣金.

附注:①对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为

②参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,曲线C1的参数方程为 (φ为参数),在以O为极点,x轴的正半轴为极轴的极坐标系中,曲线C2是圆心为(2,),半径为1的圆.

(1)求曲线C1的普通方程和C2的直角坐标方程;

(2)设M为曲线C1上的点,N为曲线C2上的点,求|MN|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数=

(I)求函数的单调区间;

(II)设函数=(x+1)lnx-x+1,证明:当x>0且x≠1时,x-1与同号。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线与直线交于不同两点分别过点、点作抛物线的切线,所得的两条切线相交于点.

(Ⅰ)求证为定值:

(Ⅱ)求的面积的最小值及此时的直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为常数,为自然对数的底数)的图象在点处的切线与该函数的图象恰好有三个公共点,求实数的取值范围是( )

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,曲线处的切线方程为.

(1)求的值;

(2)求证:时,

(3)求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图, 在△中, 点边上, .

(Ⅰ)求

(Ⅱ)若△的面积是, 求.

查看答案和解析>>

同步练习册答案