精英家教网 > 高中数学 > 题目详情

【题目】某海关对同时从三个不同地区进口的某种商品进行随机抽样检测已知从三个地区抽取的商品件数分别是50,150,100.检测人员再用分层抽样的方法从海关抽样的这些商品中随机抽取6件样品进行检测.

1)求这6件样品中,来自各地区商品的数量

2)若在这6件样品中随机抽取2件送往另一机构进行进一步检测,求这2件样品来自相同地区的概率.

【答案】(1)1,3,2;(2) 这2件样品来自相同地区的概率是.

【解析】试题分析:(1由样本容量与总体中的个体数的比是可得 三个地区抽到的商品数量分别是 .;(2根据列举法得到在这件样品中随机抽取件的基本事件总数,以及这件商品来自相同地区的事件个数,代入古典概型概率计算公式可得结果.

试题解析:(1)因为样本容量与总体中的个体数的比是

所以, 三个地区抽到的商品数量分别是

.

(2)记来自三个地区的6件样品分别为

则从6件样品中抽取2件商品构成的所有基本事件为

,共15个.

记“2件样品来自相同地区”为事件,这些基本事件共有4个,

所以,即这2件样品来自相同地区的概率是.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】椭圆的离心率是过点的动直线与椭圆相交于两点当直线轴平行时直线被椭圆截得的线段长为.

(Ⅰ)求椭圆的方程

(Ⅱ)在轴上是否存在异于点的定点使得直线变化时总有若存在求出点的坐标若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 ,

有零点 m 的取值范围;

确定 m 的取值范围使得有两个相异实根.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知F1 , F2分别为椭圆C: + =1(a>b>0)的左、右两个焦点,椭圆上点M( )到F1、F2两点的距离之和等于4.
(1)求椭圆C的方程;
(2)已知过右焦点且垂直于x轴的直线与椭圆交于点N(点N在第一象限),E,F是椭圆C上的两个动点,如果kEN+KFN=0,证明直线EF的斜率为定值,并求出这个定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】BD是等腰直角三角形△ABC腰AC上的中线,AM⊥BD于点M,延长AM交BC于点N,AF⊥BC于点F,AF与BD交于点E.

(1)求证;△ABE≌△ACN;
(2)求证:∠ADB=∠CDN.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近年来,我国许多省市雾霾天气频发,为增强市民的环境保护意识,某市面向全市征召名义务宣传志愿者,成立环境保护宣传组织,现把该组织的成员按年龄分成组第,第,第,第,第,得到的频率分布直方图如图所示,已知第组有人.

(1)求该组织的人数;

(2)若在第组中用分层抽样的方法抽取名志愿者参加某社区的宣传活动,应从第组各抽取多少名志愿者?

(3)在(2)的条件下,该组织决定在这名志愿者中随机抽取名志愿者介绍宣传经验,求第组至少有名志愿者被抽中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 ,若存在x1 , x2 , 当0≤x1<x2<2时,f(x1)=f(x2),则x1f(x2)﹣f(x2)的取值范围为( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业生产甲、乙两种产品,已知生产每吨甲产品要用A原料3吨,B原料2吨,生产每吨乙产品要用A原料1吨,B原料3吨。销售每吨甲产品可获得利润5万元,每吨乙产品可获得利润3万元,该企业在一个生产周期内消耗A原料不超过13吨,B原料不超过18吨,那么该企业可获得最大利润是___________万元

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正方体ABCDA1B1C1D1中,MNEF分别是棱A1B1A1D1B1C1C1D1的中点.

(1)求MNAC所成角,并说明理由.

(2)求证:平面AMN∥平面EFDB

查看答案和解析>>

同步练习册答案