精英家教网 > 高中数学 > 题目详情
2015年元旦联欢晚会某师生一块做游戏,数学老师制作了六张卡片放在盒子里,卡片上分别写着六个函数:分别写着六个函数:f1(x)=x2+1,f2(x)=x3,f3(x)=
ln|x|
x
,f4(x)=xcosx,f5(x)=|sinx|,f6(x)=3-x.
(1)现在取两张卡片,记事件A为“所得两个函数的奇偶性相同”,求事件A的概率;
(2)从盒中不放回逐一抽取卡片,若取到一张卡片上的函数是奇函数则停止抽取,否则继续进行,记停止时抽取次数为ξ,写出ξ的分布列,并求其数学期望.
考点:离散型随机变量的期望与方差,离散型随机变量及其分布列
专题:概率与统计
分析:(1)由等可能事件概率计算公式能求出事件A的概率.
(2)由题意得ξ的可能取值为1,2,3,4,分别求出相应的概率,由此能求出ξ的分布列和数学期望.
解答: 解:(1)由题意知f2(x)=x3,f3(x)=
ln|x|
x
,f4(x)=xcosx都是奇函数,
f1(x)=x2+1,f5(x)=|sinx|都是偶函数,f6(x)=3-x是非奇非偶函数,
取两张卡片,记事件A为“所得两个函数的奇偶性相同”,
则事件A的概率P(A)=
C
2
3
+
C
2
2
C
2
6
=
4
15

(2)由题意得ξ的可能取值为1,2,3,4,
P(ξ=1)=
C
1
3
C
1
6
=
1
2

P(ξ=2)=
C
1
3
C
1
3
C
1
6
C
1
5
=
3
10

P(ξ=3)=
C
1
3
C
1
2
C
1
3
C
1
6
C
1
5
C
1
4
=
3
20

P(ξ=4)=
C
1
3
C
1
2
C
1
3
C
1
6
C
1
5
C
1
4
C
1
3
=
1
20

∴ξ的分布列为:
 ξ1 2 3 4
 P 
1
2
 
3
10
 
3
20
 
1
20
Eξ=
1
2
+2×
3
10
+3×
3
20
+4×
1
20
=
7
4
点评:本题考查概率的求法,考查离散型随机变量的分布列和数学期望的求法,是中档题,解题时要认真审题,在历年高考中都是必考题型之一.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

给出下列命题:
①“若x>2,则x>3”的否命题;
②“?a∈(0,+∞),函数y=ax在定义域内单调递增”的否定;
③“π是函数y=sinx的一个周期”或“2π是函数y=sin2x的一个周期”;
④“x2+y2=0”是“xy=0”的必要条件.
其中真命题的个数是(  )
A、4B、3C、2D、1

查看答案和解析>>

科目:高中数学 来源: 题型:

下列各式正确的是(  )
A、0•
a
=
0
B、0•
a
=0
C、0•a=
0
D、
0
•a=0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的三个顶点的坐标分别是A(5,1),B(7,-3),C(2,-8),求它的外接圆的半径及方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=cos2x+sinx的值域为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设a为函数f(x)=x2+2α
1-x2
2-6α+13,设t=
1-x2

(1)求t的取值范围并将f(x)表示为关于t的函数g(t);
(2)求函数g(t)的最大值m,用a表示.

查看答案和解析>>

科目:高中数学 来源: 题型:

设x>0,求证:
1
x+1
<ln
x+1
x
1
x

查看答案和解析>>

科目:高中数学 来源: 题型:

为了解某班学生喜爱打篮球是否与性别有关,对本班60人进行了问卷调查得到了如下的2×2列联表:
喜爱打篮球不喜爱打篮球合计
男生24832
女生121628
合计362460
(Ⅰ)你是否有95%的把握认为喜爱打篮球与性别有关?说明你的理由.
(Ⅱ)现从女生中抽取2人进一步调查,设其中喜爱打篮球的女生人数为X,求X的分布列与期望.
下面的临界值表供参考:
P(X2≥x0)或P(K2≥k00.100.050.0100.005
x0(或k02.7063.8416.6357.879
(参考公式:K2=
n(n11n13-n13n21)2
n1+n2+n+1n+1
,其中n=n11+n12+n21+n12或K2=
n(nd-bc)2
(a+b)(c+d)(a+c)(b+d)
其中n=a+b+c+d))

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=asinωx+bcosωx(ω>0,x∈R)的相邻两个对称轴之间的距离为
π
2
,且满足f(x)≥f(
3
)=-1.
(1)求f(x)的解析式;
(2)试列表并用“五点法”画出函数y=f(x)在区间[-
π
12
11π
12
]上的图象.
(3)若函数g(x)=f(
π
2
-x),求函数y=g(x)的单调递减区间.

查看答案和解析>>

同步练习册答案