精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=asinx﹣bcosx(a、b为常数,a≠0,x∈R)在x= 处取得最小值,则函数y=f( ﹣x)是(
A.偶函数且它的图象关于点(π,0)对称
B.偶函数且它的图象关于点 对称
C.奇函数且它的图象关于点 对称
D.奇函数且它的图象关于点(π,0)对称

【答案】D
【解析】解:已知函数f(x)=asinx﹣bcosx(a、b为常数,a≠0,x∈R), ∴ 的周期为2π,若函数在 处取得最小值,不妨设
则函数 =
所以 是奇函数且它的图象关于点(π,0)对称,
故选:D.
先对函数f(x)运用三角函数的辅角公式进行化简求出最小正周期,根据正弦函数的最值和取得最值时的x的值可求出函数 的解析式,进而得到答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某工厂某种产品的年固定成本为250万元,每生产x千件,需另投入成本为C(x),当年产量不足80千件时,C(x)= (万元).当年产量不小于80千件时,C(x)=51x+ (万元).每件商品售价为0.05万元.通过市场分析,该厂生产的商品能全部售完.
(1)写出年利润L(x)(万元)关于年产量x(千件)的函数解析式;
(2)年产量为多少千件时,该厂在这一商品的生产中所获利润最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设{an}是等差数列,下列结论中正确的是(
A.若a1+a2>0,则a2+a3>0
B.若a1+a2<0,则a2+a3<0
C.若0<a1<a2 , 则a2
D.若a1<0,则(a2﹣a1)(a2﹣a3)<0

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知椭圆C: + =1(a>b>0)的离心率e= ,过点(0,﹣b),(a,0)的直线与原点的距离为 ,M(x0 , y0)是椭圆上任一点,从原点O向圆M:(x﹣x02+(y﹣y02=2作两条切线,分别交椭圆于点P,Q.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若记直线OP,OQ的斜率分别为k1 , k2 , 试求k1k2的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C经过点A(1,1)和B(4,﹣2),且圆心C在直线l:x+y+1=0上.
(Ⅰ)求圆C的标准方程;
(Ⅱ)设M,N为圆C上两点,且M,N关于直线l对称,若以MN为直径的圆经过原点O,求直线MN的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图为一组合几何体,其底面ABCD为正方形,PD⊥平面ABCD,EC∥PD且PD=AD=2EC=2.
(I)求证:AC⊥平面PDB;
(II)求四棱锥B﹣CEPD的体积;
(III)求该组合体的表面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】算法如图,若输入m=210,n=117,则输出的n为(
A.2
B.3
C.7
D.11

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】计算下列几个式子,结果为 的序号是 ①tan25°+tan35° tan25°tan35°,

③2(sin35°cos25°+sin55°cos65°),

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某厂生产甲、乙两种产品每吨所需的煤、电和产值如下表所示.

用煤(吨)

用电(千瓦)

产值(万元)

甲产品

3

50

12

乙产品

7

20

8

但国家每天分配给该厂的煤、电有限,每天供煤至多47吨,供电至多300千瓦,问该厂如何安排生产,使得该厂日产值最大?最大日产值为多少?

查看答案和解析>>

同步练习册答案