精英家教网 > 高中数学 > 题目详情
14、已知f(x)=x5+ax3+bx-8且f(-2)=10,那么f(2)=
-26
分析:由已知中f(x)=x5+ax3+bx-8,我们构造出函数g(x)=f(x)+8,由函数奇偶性的性质,可得g(x)为奇函数,由f(-2)=10,我们逐次求出g(-2)、g(2),即可求出答案.
解答:解:∵f(x)=x5+ax3+bx-8
令g(x)=f(x)+8=x5+ax3+bx,则g(x)为奇函数
∵f(-2)=10,
∴g(-2)=10+8=18
∴g(2)=-18
∴f(2)=g(2)-8=-18-8=-26
故答案为-26
点评:本题考查的知识点是函数奇偶性的性质,其中构造出函数g(x)=f(x)+8,由函数奇偶性的性质--“奇+奇=奇”,判断出g(x)为奇函数,是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)=x5-a,且f(-1)=0,则f-1(1)的值是(  )
A、0
B、1
C、-1
D、
52

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=x5+x3且f(m)=10,那么f(-m)=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=x5+ax3+bx-2且f(-2)=m,那么f(2)+f(-2)=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=x5+ax3+bx-8且f(-2)=-6,那么f(2)=(  )

查看答案和解析>>

同步练习册答案