【题目】我国古代数学著作《九章算术》有如下问题:“今有人持金出五关,前关二而税一,次关三而税一,次关四而税一,次关五而税一,次关六而税一,并五关所税,适重一斤,问本持金几何”其意思为“今有人持金出五关,第1关收税金 ,第2关收税金为剩余金的 ,第3关收税金为剩余金的 ,第4关收税金为剩余金的 ,第5关收税金为剩余金的 ,5关所收税金之和,恰好重1斤,问原来持金多少?”若将题中“5关所收税金之和,恰好重1斤,问原来持金多少?”改成假设这个原来持金为x,按此规律通过第8关,则第8关需收税金为x.
科目:高中数学 来源: 题型:
【题目】关于函数f(x)=cosxsin2x,下列说法中正确的是
①y=f(x)的图象关于(π,0)中心对称;②y=f(x)的图象关于直线x= 对称
③y=f(x)的最大值是 ; ④f(x)即是奇函数,又是周期函数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数y=x+1+lnx在点A(1,2)处的切线l,若l与二次函数y=ax2+(a+2)x+1的图象也相切,则实数a的取值为( )
A.12
B.8
C.0
D.4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数fn(x)=a1x+a2x2+a3x3+…+anxn , 且fn(﹣1)=(﹣1)nn,n∈N* , 设函数g(n)= ,若bn=g(2n+4),n∈N* , 则数列{bn}的前n(n≥2)项和Sn等于 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知f(x)=|2x﹣1|+x+ 的最小值为m.
(1)求m的值;
(2)已知a,b,c是正实数,且a+b+c=m,求证:2(a3+b3+c3)≥ab+bc+ca﹣3abc.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=2lnx﹣3x2﹣11x.
(1)求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)若关于x的不等式f(x)≤(a﹣3)x2+(2a﹣13)x﹣2恒成,求整数a的最小值;
(3)若正实数x1 , x2满足f(x1)+f(x2)+4(x +x )+12(x1+x2)=4,证明:x1+x2≥2.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在三棱柱ABC﹣A1B1C1中,CA=CB,侧面ABB1A1是边长为2的正方形,点E,F分别在线段AA1、A1B1上,且AE= ,A1F= ,CE⊥EF. (Ⅰ)证明:平面ABB1A1⊥平面ABC;
(Ⅱ)若CA⊥CB,求直线AC1与平面CEF所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】过正方体ABCD﹣A1B1C1D1的顶点A的平面α与平面CB1D1平行,设α∩平面ABCD=m,α∩平面ABB1A1=n,那么m,n所成角的余弦值等于( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x3﹣x+2 .
(Ⅰ)求函数y=f(x)在点(1,f(1))处的切线方程;
(Ⅱ)令g(x)= +lnx,若函数y=g(x)在(e,+∞)内有极值,求实数a的取值范围;
(Ⅲ)在(Ⅱ)的条件下,对任意t∈(1,+∞),s∈(0,1),求证: .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com