精英家教网 > 高中数学 > 题目详情
11.已知f(x)=$\left\{\begin{array}{l}{{x}^{2}-4x+3,x≤0}\\{-{x}^{2}-2x+3,x>0}\end{array}\right.$,当x∈[-2,2]时不等式f(x+a)≥f(2a-x)恒成立,则实数a的最小值是4.

分析 分析分段函数的单调性,得知函数单调递减,不等式可整理为2x≤a,只需求出左式的最大值即可.

解答 解:当x≤0时,f(x)=x2-4x+3,
对称轴为x=2,故在区间内递减,f(x)≥f(0)=3;
当x>0时,f(x)=-x2-2x+3,
对称轴为x=-2,故在区间内递减且f(x)<f(0)=3;
可知函数f(x)在整个区间内递减,
∴x∈[-2,2]时不等式f(x+a)≥f(2a-x)恒成立,
∴x+a≤2a-x,
∴2x≤a,
∴a≥4,
故答案为4.

点评 考查了分段函数的单调性和单调性的利用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.求下列函数的导数.
(1)$y=\frac{e^x}{x}$;           
(2)y=(2x2-1)(3x+1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知正六边形A1A2…A6内接于圆O,点P为圆O上一点,向量$\overrightarrow{OP}$与$\overrightarrow{O{A_i}}$的夹角为θi(i=1,2,…,6),若将θ1,θ2,…,θ6从小到大重新排列后恰好组成等差数列,则该等差数列的第3项为$\frac{5π}{12}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.在极坐标系中,与圆ρ=2cosθ相切,且与极轴平行的直线的极坐标方程是ρsinθ=±1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.求通项公式:
(1)在数列{an}中,若a1=2,an+1=an+ln(1+$\frac{1}{n}$),则an=2+lnn;
(2)在数列{an}中,若a1=5,an+1=2an+2n+1-1,则an=(n+1)•2n+1;
(3)若an=2an+4n+2,求数列的通项公式;
(4)a1=1,(n+1)a${\;}_{n+1}^{2}$-na${\;}_{n}^{2}$+an+1an=0(n∈N*且an>0),求数列的通项an
(5)a1=1,nan=a1+2a2+3a3+…+(n-1)an-1(n≥2,n∈N*),求数列的通项an
(6)a1=1,an+1=$\frac{{a}_{n}}{-7{a}_{n}-6}$,求数列的通项an
(7)a1=1,若an+1=a${\;}_{n}^{2}$+2an,求数列的通项an

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.函数$f(x)=|{\begin{array}{l}{cos(π-x)}&{sinx}\\{sin(π+x)}&{cosx}\end{array}}|$的最小正周期t=π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.点P是抛物线y2=4x上一动点,则点P到点A(0,-1)的距离与到直线x=-1的距离和的最小值是(  )
A.$\sqrt{5}$B.$\sqrt{3}$C.2D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知直线l与圆C:x2+y2+2x-4y+a=0相交于A,B两点,弦AB的中点为M(0,1).
(1)若圆C的半径为$\sqrt{3}$,求实数a的值;
(2)若弦AB的长为4,求实数a的值;
(3)求直线l的方程及实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,在四棱锥P-ABCD中,底面ABCD是平行四边形,∠BCD=135°,侧面PAB⊥底面ABCD,∠BAP=90°,AB=AC=PA=2,E,F分别为BC,AD的中点,点M在线段PD上.
(Ⅰ)求证:EF⊥平面PAC; 
(Ⅱ)若M为PD的中点,求证:ME∥平面PAB;
(Ⅲ)如果直线ME与平面PBC所成的角和直线ME与平面ABCD所成的角相等,求$\frac{PM}{PD}$的值.

查看答案和解析>>

同步练习册答案