精英家教网 > 高中数学 > 题目详情
(本小题满分14分)
已知椭圆的焦点F与抛物线C:的焦点关于直线x-y=0
对称.
(Ⅰ)求抛物线的方程;
(Ⅱ)已知定点A(a,b),B(-a,0)(ab),M是抛物线C上的点,设直线AM,
BM与抛物线的另一交点为.求证:当M点在抛物线上变动时(只要存在
)直线恒过一定点,并求出这个定点的坐标.
解:(Ⅰ).                             …..1分
椭圆的焦点在y轴上,即F(0,1),F关于直线x-y=0对称的点为(1,0);…..2分
而抛物线的焦点坐标为即得p=2,所以所求抛物线的方程为.…..5分
(Ⅱ)证明:设M,的坐标分别为
由A、M、三点共线得: ,   …..7分
化简得
同理,由B、M、三点共线得:.     …..9分
设(x,y)是直线上的任意一点,则;…..10分
代入上式整理得:
由M是任意的,则有  , …..13分
所以动直线恒过定点.        …..14分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)本题共有2个小题,第1小题满分5分,第2小题满分7分.
已知抛物线,F是焦点,直线l是经过点F的任意直线.
(1)若直线l与抛物线交于两点A、B,且(O是坐标原点,M是垂足),求动点M的轨迹方程;
(2)若C、D两点在抛物线上,且满足,求证直线CD必过定点,并求出定点的坐标.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
设抛物线>0)上有两动点A、B(AB不垂直轴),F为焦点,且,又线段AB的垂直平分线经过定点Q(6,0),求抛物线方程。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知抛物线C的顶点在原点, 焦点为F(0, 1).

(Ⅰ) 求抛物线C的方程;
(Ⅱ) 在抛物线C上是否存在点P, 使得过点P
的直线交C于另一点Q, 满足PFQF, 且
PQ与C在点P处的切线垂直?
若存在, 求出点P的坐标; 若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知抛物线与直线的两个交点分别为A、B,点P在抛物线上从A向B运动(点P不同于点A、B),

(Ⅰ)求由抛物线与直线所围成的图形面积;
(Ⅱ)求使⊿PAB的面积为最大时P点的坐标。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若抛物线的焦点与双曲线的右焦点重合,则的值为( )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

抛物线的焦点坐标是___     ,

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若抛物线的焦点与椭圆的右焦点重合,则的值为( ﹡ )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知A、B为抛物线C:上的不同两点,F为抛物线C的焦点,若则直线AB的斜率为                                                                                                                               (   )
A.                          B.                          C.                          D.

查看答案和解析>>

同步练习册答案