精英家教网 > 高中数学 > 题目详情
设函数f(x)=ax-(a+1)ln(x+1),其中a>0.
(1)求f(x)的单调区间;
(2)当x>0时,证明不等式:<ln(x+1)<x;
(3)设f(x)的最小值为g(a),证明不等式:-1<ag(a)<0
(1) f(x)在(-1,)为减,在(,+)为增
(2)将所证明的不等式利用构造函数,借助于导数的思想求解最值,来证明不等式恒大于等于零或者恒小于等于零即可。
(3)在上一问的基础上,进一步分析得到a的表达式,利用构造函数来求证。

试题分析:解:(1)f’(x)=(x>-1,a>0)
令f’(x)=0
f(x)在(-1,)为减,在(,+)为增 f (x)min=f()=1-(a+1)ln(+1)
(2)设F(x)=ln(x+1)-
F’(x)=F(x)在(0,+)为增函数
F(x)>F(0)="0" F(x)>0即
G(x)=x-ln(x+1)(x>0)
G’(x)=1-   G(x)在(0,+)为增函数
G(x)>G(0)="0"  G(x)>0即ln(x+1)<x
经上可知
(3)由(1)知:





点评:导数在函数中的应用,频率最多的试题就是考查函数的单调性,以及证明不等式。那么对于后者的求解,关键是构造函数,借助于函数的最值来得到证明。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
已知函数
(1)若是定义域上的单调函数,求的取值范围;
(2)若在定义域上有两个极值点,证明:

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

函数的值域是       ;

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)若,求a的值;
(2)若a>1,求函数f(x)的单调区间与极值点;
(3)设函数是偶函数,若过点A(1,m)可作曲线y=f(x)的三条切线,求实数m的范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

,则函数的解集是(    )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)探究函数的最小值,并确定取得最小值时x的值.列表如下:
x

0.5
1
1.5
1.7
1.9
2
2.1
2.2
2.3
3
4
5
7

y

16
10
8.34
8.1
8.01
8
8.01
8.04
8.08
8.6
10
11.6
15.14

请观察表中y值随x值变化的特点,完成以下的问题.
(1)函数在区间(0,2)上递减;函数在区间                     上递增.当             时,                 .
(2)证明:函数在区间(0,2)递减.
(3)思考:函数时,有最值吗?是最大值还是最小值?此时x为何值?(直接回答结果,不需证明)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)已知函数
(Ⅰ)求函数的单调区间;
(Ⅱ)a为何值时,方程有三个不同的实根.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分14分)
已知函数
(1)
(2)

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

,则的最小值为         。

查看答案和解析>>

同步练习册答案