精英家教网 > 高中数学 > 题目详情

设函数定义域为,且.
设点是函数图像上的任意一点,过点分别作直线轴的垂线,垂足分别为

(1)写出的单调递减区间(不必证明);(4分)
(2)问:是否为定值?若是,则求出该定值,若不是,则说明理由;(7分)
(3)设为坐标原点,求四边形面积的最小值.(7分)

(1)上是减函数.(2) ;
(3)此时四边形面积有最小值.

解析试题分析:(1)、因为函数的图象过点
所以                                         2分
函数上是减函数.                                   4分
(2)、(理)设                                         5分
直线的斜率                                       
的方程     6分
联立                               
  9分
                                              
                   11分
(3)                                    12分
                                       13分
,                   14分
                                                
,                                15分
,                      16分
                                     17分
当且仅当时,等号成立.
∴此时四边形面积有最小值.                              18分
考点:本题主要考查函数的性质,均值定理的应用,向量的坐标运算。
点评:综合题,利用函数方程思想,得出面积表达式,进一步运用均值定理求面积的最小值,对数学式子变形能力要求较高。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数
(1)若不等式对任意的实数恒成立,求实数的取值范围;
(2)设,且上单调递增,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
若函数为奇函数,当时,(如图).

(Ⅰ)求函数的表达式,并补齐函数的图象;
(Ⅱ)用定义证明:函数在区间上单调递增.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)已知函数
(1)若的单调区间;
(2)若函数存在极值,且所有极值之和大于,求a的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(满分12分)
已知函数,设其定义域域是.
(1)求
(2)求函数的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)已知函数
(1)若,求函数在点(0,)处的切线方程;
(2)是否存在实数,使得的极大值为3.若存在,求出值;若不存在,说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)
把边长为的等边三角形铁皮剪去三个相同的四边形(如图阴影部分)后,用剩余部分做成一个无盖的正三棱柱形容器(不计接缝),设容器的高为,容积为.

(Ⅰ)写出函数的解析式,并求出函数的定义域;
(Ⅱ)求当x为多少时,容器的容积最大?并求出最大容积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题9分)函数是定义在上的奇函数,当
(Ⅰ)求的值;
(Ⅱ)求的解析式。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分9分)已知函数的定义域为
(1)求
(2)当时,求函数的最大值。

查看答案和解析>>

同步练习册答案