精英家教网 > 高中数学 > 题目详情

【题目】阳马和鳖臑(bienao)是《九章算术·商功》里对两种锥体的称谓.如图所示,取一个长方体,按下图斜割一分为二,得两个模一样的三棱柱,称为堑堵(如图).再沿其中一个堑堵的一个顶点与相对的棱剖开,得四棱锥和三棱锥各一个,有一棱与底面垂直的四棱锥称为阳马(四棱锥)余下三棱锥称为鳖臑(三棱锥)若将某长方体沿上述切割方法得到一个阳马一个鳖臑,且该阳马的正视图和鳖臑的侧视图如图所示,则可求出该阳马和鳖臑的表面积之和为(

A.B.

C.D.

【答案】B

【解析】

首先根据三视图得到三棱锥和四棱锥的棱长,再计算其表面积即可.

结合三视图易知:

在阳马中,.

所以阳马的表面积.

在鳖臑中,.

所以鳖臑的表面积

所以阳马和鳖臑的表面积之和.

故选:B

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】定义在上的函数,若满足:对任意,存在常数,都有成立,则称上的有界函数,其中称为函数的上界

1)设,判断上是否是有界函数,若是,说明理由,并写出所有上界的值的集合;若不是,也请说明理由.

2)若函数上是以为上界的有界函数,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】蜂巢是由工蜂分泌蜂蜡建成的从正面看,蜂巢口是由许多正六边形的中空柱状体连接而成,中空柱状体的底部是由三个全等的菱形面构成,菱形的一个角度是,这样的设计含有深刻的数学原理、我国著名数学家华罗庚曾专门研究蜂巢的结构著有《谈谈与蜂房结构有关的数学问题》.用数学的眼光去看蜂巢的结构,如图,在六棱柱的三个顶点ACE处分别用平面BFM,平面BDO,平面DFN截掉三个相等的三棱锥,平面BFM,平面BDO,平面DFN交于点P,就形成了蜂巢的结构.如图,设平面PBOD与正六边形底面所成的二面角的大小为,则有:(

A.B.

C.D.以上都不对

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】直角坐标系xOy中,已知MN是圆C:(x2)2+(y3)2=2的一条弦,且CMCNPMN的中点.当弦MN在圆C上运动时,直线lxy5=0上总存在两点AB,使得恒成立,则线段AB长度的最小值是_____.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】阳马和鳖臑(bienao)是《九章算术·商功》里对两种锥体的称谓.如图所示,取一个长方体,按下图斜割一分为二,得两个模一样的三棱柱,称为堑堵(如图).再沿其中一个堑堵的一个顶点与相对的棱剖开,得四棱锥和三棱锥各一个,有一棱与底面垂直的四棱锥称为阳马(四棱锥)余下三棱锥称为鳖臑(三棱锥)若将某长方体沿上述切割方法得到一个阳马一个鳖臑,且该阳马的正视图和鳖臑的侧视图如图所示,则可求出该阳马和鳖臑的表面积之和为(

A.B.

C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】蒙日圆涉及的是几何学中的一个著名定理,该定理的内容为:椭圆上两条互相垂直的切线的交点必在一个与椭圆同心的圆上,该圆称为原椭圆的蒙日圆,若椭圆的蒙日圆为,则

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正方体的棱长为4,点EF为棱CD的中点.

1)求证:平面

2)求直线与平面ACF所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点为,上、下顶点为,四边形是面积为2的正方形.

1)求椭圆的标准方程;

2)已知点,过点的直线与椭圆交于两点,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】改革开放40多年来,城乡居民生活从解决温饱的物质需求为主逐渐转变到更多元化的精神追求,消费结构明显优化.下图给出了1983~2017年部分年份我国农村居民人均生活消费支出与恩格尔系数(恩格尔系数是食品支出总额占个人消费支出总额的比重)统计图.对所列年份进行分析,则下列结论错误的是(

A.农村居民人均生活消费支出呈增长趋势

B.农村居民人均食品支出总额呈增长趋势

C.2011年至2015年农村居民人均生活消费支出增长最快

D.2015年到2017年农村居民人均生活消费支出增长比率大于人均食品支出总额增长比率

查看答案和解析>>

同步练习册答案