精英家教网 > 高中数学 > 题目详情
2.已知椭圆的两个焦点为F1(-$\sqrt{5}$,0),F2($\sqrt{5}$,0),M是椭圆上一点,若MF1⊥MF2,|MF1||MF2|=8,则该椭圆的方程是(  )
A.$\frac{{x}^{2}}{7}$+$\frac{{y}^{2}}{2}$=1B.$\frac{{x}^{2}}{2}$+$\frac{{y}^{2}}{7}$=1C.$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{4}$=1D.$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{9}$=1

分析 设|MF1|=m,|MF2|=n,根据MF1⊥MF2,|MF1||MF2|=8,|F1F2|=2$\sqrt{5}$,利用勾股定理,椭圆的定义,求出a,可得b,即可求出椭圆的方程.

解答 解:设|MF1|=m,|MF2|=n,
∵MF1⊥MF2,|MF1||MF2|=8,|F1F2|=2$\sqrt{5}$,
∴m2+n2=20,mn=8,
∴(m+n)2=36,
∴m+n=2a=6,
∴a=3,
∵c=$\sqrt{5}$,
∴b=2,
∴椭圆的方程是$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{4}$=1.
故选:C.

点评 本题考查椭圆的方程,考查勾股定理,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.一个扇形的面积为3π,弧长为2π,则这个扇形中心角为(  )
A.$\frac{π}{3}$B.$\frac{π}{4}$C.$\frac{π}{6}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.方程x2+y2-2y=0所表示的曲线的特征是(  )
A.关于直线y=x对称B.关于原点对称C.关于x轴对称D.关于y轴对称

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知双曲线$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{2}$=1,其双曲线的右焦点与抛物线y2=4$\sqrt{3}$x的焦点重合,则该双曲线的方程为${x}^{2}-\frac{{y}^{2}}{2}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数$f(x)=\frac{1}{2}a{x^2}+3lnx,g(x)=-bx$,其中a,b∈R.设h(x)=f(x)-g(x),若$f'(\frac{{\sqrt{2}}}{2})=0$,且f′(1)=g(-1)-2.
(1)求a,b的值;
(2)求函数h(x)的图象在点(1,-4)处的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.等比数列{an}中,a3=9前三项和为S3=${∫}_{0}^{3}$3x2dx,则公比q的值是1或-$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=(log${\;}_{\frac{1}{4}}$x)2-log${\;}_{\frac{1}{4}}$x+5,x∈[1,4],求f(x)的最大值和最小值及对应的x值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.以下命题中:
①设有一个回归方程$\widehat{y}$=2-3x,变量x增加一个单位时,y平均增加3个单位;
②两个随机变量的线性相关性越强,则相关系数的绝对值越接近于1;
③在某项测量中,测量结果ξ服从正态分布N(1,σ2)(σ>0).若ξ在(0,1)内取值的概率为0.4,则ξ在(0,2)内取值的概率为0.8.
④将八进制数135(8)转化为二进制数是1011101(2)
其中真命题的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知双曲线的一条渐近线方程为y=$\frac{4}{3}$x,那么该双曲线的离心率为$\frac{5}{3}$或$\frac{5}{4}$.

查看答案和解析>>

同步练习册答案