精英家教网 > 高中数学 > 题目详情

【题目】已知数列1121241248124816 ,其中第一项是20,接下来的两项是2021,再接下来的三项是202122依此类推. 设该数列的前项和为,

规定:若 ,使得 ),则称为该数列的“佳幂数”.

Ⅰ)将该数列的佳幂数从小到大排列,直接写出前3佳幂数

Ⅱ)试判断50是否为佳幂数,并说明理由;

III)(i求满足>70的最小的佳幂数;

ii)证明:该数列的佳幂数有无数个.

【答案】123;(见解析;III)(i95ii)见解析.

【解析】试题分析:(1) (2)先根据题意确定前9项有45个数,所以,不能表示为,因此不是“佳幂数”(3)i因为所以 结合条件确定t的最小值,解得最小的佳幂数ii)由佳幂数有无数个

试题解析:(123

)由题意可得,数列如下:

1:12:1,2;第3组:1,2,4 k组: .

则该数列的前项的和为:

由于,对 ,故50不是“佳幂数”.

III)(i要使,有

此时

所以是第组等比数列的部分项的和,

所以,则,此时

所以对应满足条件的最小“佳幂数”.

ii)由i知:

,且取任意整数时,可得“佳幂数”

所以,该数列的“佳幂数”有无数个.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】长方形中, 中点(图1).将沿折起,使得(图2)在图2中:

(1)求证:平面 平面

(2)在线段上是否存点,使得二面角为大小为说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是一几何体的平面展开图,其中ABCD为正方形,EF分别为PAPD的中点,

在此几何体中,给出下面四个结论:

直线BE与直线CF异面; 直线BE与直线AF异面;

直线EF平面PBC平面BCE平面PAD.

其中正确的有(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的右焦点与短轴两个端点的连线互相垂直.

1)求椭圆的标准方程;

2)设点为椭圆的上一点,过原点且垂直于的直线与直线交于点,求面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥PABCD中,底面ABCD是菱形,∠ABC60°为正三角形,且侧面PAB底面ABCD. EM分别为线段ABPD的中点.

(I)求证:PE⊥平面ABCD

II求证:PB//平面ACM

(III)在棱CD上是否存在点G,使平面GAM⊥平面ABCD,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市高中全体学生参加某项测评,按得分评为两类(评定标准见表1).根据男女学生比例,使用分层抽样的方法随机抽取了10000名学生的得分数据,其中等级为的学生中有40%是男生,等级为的学生中有一半是女生.等级为的学生统称为类学生,等级为的学生统称为类学生.整理这10000名学生的得分数据,得到如图2所示的频率分布直方图,

类别

得分(

表1

(I)已知该市高中学生共20万人,试估计在该项测评中被评为类学生的人数;

(Ⅱ)某5人得分分别为45,50,55,75,85.从这5人中随机选取2人组成甲组,另外3人组成乙组,求“甲、乙两组各有1名类学生”的概率;

(Ⅲ)在这10000名学生中,男生占总数的比例为51%, 类女生占女生总数的比例为 类男生占男生总数的比例为,判断的大小.(只需写出结论)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点,圆,点是圆上一动点, 的垂直平分线与交于点.

1)求点的轨迹方程;

2)设点的轨迹为曲线,过点且斜率不为0的直线交于两点,点关于轴的对称点为,证明直线过定点,并求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

(1)求过点的切线方程;

(2)当时,求函数的最大值;

(3)证明:当时,不等式对任意均成立(其中为自然对数的底数, ).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在上的函数满足,当时, ,函数.若对任意,存在,不等式成立,则实数的取值范围是( )

A. B. C. D.

查看答案和解析>>

同步练习册答案