精英家教网 > 高中数学 > 题目详情
在正项等比数列{an}中,lga3+lga6+lga9=6,则a5•a7的值是(  )
A、10000B、1000
C、100D、10
考点:等比数列的性质
专题:等差数列与等比数列
分析:由已知利用对数的运算性质求得a3a6a9=106,然后利用等比数列的运算性质求得a5•a7的值.
解答: 解:在正项等比数列{an}中,由lga3+lga6+lga9=6,得
lg(a3a6a9)=6,a3a6a9=106
a63=106,a6=100,
则a5•a7=a62=10000
故选:A.
点评:本题考查了等比数列的性质,考查了对数的运算性质,是基础的计算题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知α是第二象限角,且sin(
π
2
)=-
1
3
,则tan2α的值为(  )
A、
4
2
7
B、-
4
2
7
C、
4
2
9
D、-
4
2
9

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F1,F2分别是双曲线
x2
4
-
y2
21
=1的左、右焦点,P为双曲线右支上的任意一点,则
|PF1|2
|PF2| 
的最小值为(  )
A、24B、20C、16D、12

查看答案和解析>>

科目:高中数学 来源: 题型:

经过点P(0,2)作直线l交椭圆
x2
2
+y2=1于A,B两点.
(1)若△AOB的面积是
2
3
,求直线l的方程(其中O为原点).
(2)当△AOB的面积最大时,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

⊙A的方程为x2+y2-2x-2y-7=0,⊙B的方程为x2+y2+2x+2y-2=0,判断⊙A和⊙B是否相交.若相交,求过两交点的直线的方程及两交点间的距离;若不相交,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}满足an=2an-1+2n+1(n∈N*,n≥2),a1=2.
(1)设bn=
1
2n
(an+1),求证:数列{bn}是等差数列;
(2)求数列{an}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sinxcosx-
3
sin2x.
(Ⅰ)求函数f(x)的单调增区间;
(Ⅱ)求函数f(x)在x∈[0,
π
2
]的值域;
(Ⅲ)能否把函数f(x)的图象进行适当的平移得到一个奇函数的图象?如果能,写出一个平移的方法;如果不能,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

根据已知条件完成下列小题:
(1)已知椭圆的焦点在y轴,且a+c=20,a-c=4,求椭圆的标准方程;
(2)已知双曲线的焦点在x轴,焦距是8,离心率e=2,求双曲线的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

动点A在圆x2+y2-7x+4y+16=0上,点B(6,-4),求线段AB的中点O的轨迹.

查看答案和解析>>

同步练习册答案