精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

(Ⅰ)讨论函数的单调性;

(Ⅱ)设,若对任意的恒成立,求的取值范围.

【答案】(Ⅰ) (1)若上单调递增;(2)若上单调递增;在上单调递减; (Ⅱ).

【解析】

I)先求得函数的导数和定义域,然后对分成两类,讨论函数的单调性.II)将原不等式恒成立转化为“对任意的恒成立”,根据(I)的结论,结合函数的单调性,以及恒成立,求得的取值范围.

(Ⅰ) ,

(1)若,则,函数上单调递增;

(2)若,由;由

函数上单调递增;在上单调递减.

(Ⅱ)由题设,对任意的恒成立

对任意的恒成立

对任意的恒成立 ,

由(Ⅰ)可知,

,则不满足恒成立,

,由(Ⅰ)可知,函数上单调递增;在上单调递减.

,又恒成立

,即,

,则

函数上单调递增,且

,解得

的取值范围为 .

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数.

1)若,求函数处的切线方程;

2)若函数在处有两个极值点,其中.

i)求实数的取值范围;

ii)若e为自然对数的底数),求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

求证:函数上的增函数.

若不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知实数a满足1a≤2,设函数f (x)x3x2ax

(Ⅰ) a2时,求f (x)的极小值;

(Ⅱ) 若函数g(x)4x33bx26(b2)x (b∈R) 的极小值点与f (x)的极小值点相同,

求证:g(x)的极大值小于等于10

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,直线的参数方程为为参数,),以坐标原点为极点,以轴正半轴为极轴建立极坐标系,曲线的极坐标方程是.

(1)求直线的普通方程和曲线的直角坐标方程;

(2)已知直线与曲线交于两点,且,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正三棱柱中,.

1)求直线与平面所成角的正弦值;

2)在线段上是否存在点?使得二面角的大小为60°,若存在,求出的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在空间之间坐标系中,四棱锥的底面在平面上,其中点与坐标原点重合,点轴上,,顶点轴上,且.

1)求直线与平面所成角的大小;

2)设的中点,点上,且,求二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,四边形是边长为2的菱形,的中点,以为折痕将折起到的位置,使得平面平面,如图2.

1)证明:平面平面

2)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在研究吸烟与患肺癌的关系中,通过收集数据、整理分析数据得吸烟与患肺癌有关的结论,并且在犯错误的概率不超过0.01的前提下认为这个结论是成立的,下列说法中正确的是(

A.100个吸烟者中至少有99人患有肺癌

B.1个人吸烟,那么这个人有99%的概率患有肺癌

C.100个吸烟者中一定有患肺癌的人

D.100个吸烟者中可能一个患肺癌的人也没有

查看答案和解析>>

同步练习册答案