精英家教网 > 高中数学 > 题目详情
设函数f(x)=lg(x2+ax-a-1),给出下述命题:
①函数f(x)的值域为R;
②函数f(x)有最小值;
③当a=0时,函数f(x)为偶函数;
④若f(x)在区间[2,+∞)上单调递增,则实数a的取值范围a≥-4.
正确的命题是(  )
A、①③B、②③C、②④D、③④
分析:由已知中函数f(x)=lg(x2+ax-a-1),我们易判断出其真数部分的范围,结合对数函数的性质可判断①与②的真假,由偶函数的定义,可判断③的正误,再由复合函数单调性的判断方法及函数的定义域,可判断④的对错.进而得到结论.
解答:解:∵u=x2+ax-a-1的最小值为-
1
4
(a2+4a+4)≤0
∴①函数f(x)的值域为R为真命题;
但函数f(x)无最小值,故②错误;
当a=0时,易得f(-x)=f(x),即③函数f(x)为偶函数正确;
若f(x)在区间[2,+∞)上单调递增,
-
a
2
≤2,且4+2a-a-1>0

解得a>-3,故④错误;
故选A
点评:本题考查的知识点是对数函数的单调性与特殊点、对数函数的定义和值域、偶函数及复合函数的单调性,是一道函数的综合应用题,其中④中易忽略真数部分必须大于0,而错判为真命题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=
lg|x|,(x<0)
2x-1,(x≥0)
,若f(x0)>0则x0取值范围是(  )
A、(-∞,-1)∪(1,+∞)
B、(-∞,-1)∪(0,+∞)
C、(-1,0)∪(0,1)
D、(-1,0)∪(0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=lg(x2+ax-a-1),给出下述命题:①f(x)有最小值;②当a=0时,f(x)的值域为R;③若f(x)在区间[2,+∞)上单调递增,则实数a的取值范围是a≥-4.则其中正确的命题的序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

24、关于x的不等式lg(|x+3|-|x-7|)<m.
(Ⅰ)当m=1时,解此不等式;
(Ⅱ)设函数f(x)=lg(|x+3|-|x-7|),当m为何值时,f(x)<m恒成立?

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=lg(x2+ax-a),若f(x)的值域为R,则a的取值范围是
(-∞,-4]∪[0+∞)
(-∞,-4]∪[0+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

现有下列命题:
①设a,b为正实数,若a2-b2=1,则a-b<1;
②△ABC若acosA=bcosB,则△ABC是等腰三角形;
③数列{n(n+4)(
2
3
n中的最大项是第4项;
④设函数f(x)=
lg|x-1|,x≠1
0,x=1
则关于x的方程f2(x)+2f(x)=0有4个解;
⑤若sinx+siny=
1
3
,则siny-cos2x的最大值是
4
3

其中的真命题有
①③
①③
.(写出所有真命题的编号).

查看答案和解析>>

同步练习册答案