精英家教网 > 高中数学 > 题目详情
过抛物线y=x2上一点P处的切线与直线3x-y+1=0的交角为45°,那么点P的坐标是_________.

解析:抛物线在点P处的切线斜率k==2x.又由夹角公式可得k=-2或k=.所以2x=-2或2x=,即点P坐标为(-1,1)或(,).

答案:(-1,1)或(,).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

给出下列命题:
①已知椭圆
x2
16
+
y2
8
=1
的两个焦点为F1,F2,则这个椭圆上存在六个不同的点M,使得△F1MF2为直角三角形;
②已知直线l过抛物线y=2x2的焦点,且与这条抛物线交于A,B两点,则|AB|的最小值为2;
③若过双曲线C:
x2
a2
-
y2
b2
=1(a>0,b>0)
的一个焦点作它的一条渐近线的垂线,垂足为M,O为坐标原点,则|OM|=a;
④已知⊙C1:x2+y2+2x=0,⊙C2:x2+y2+2y-1=0,则这两个圆恰有2条公切线.
其中正确命题的序号是
 
.(把你认为正确命题的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

设抛物线y=x2过一定点A (-a,a2)(a>
2
),P(x,y)是抛物线上的动点.
(I)将
AP
2
表示为关于x的函数f(x),并求当x为何值时,f(x)有极小值;
(II)设(I)中使f(x)取极小值的正数x为x0,求证:抛物线在点P0(x0,y0)处的切线与直线AP0垂直.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•大丰市一模)如图所示,已知平面直角坐标系xOy,抛物线y=-x2+bx+c过点A(4,0)、B(1,3).
(1)求该抛物线的表达式,并写出该抛物线的对称轴和顶点坐标;
(2)记该抛物线的对称轴为直线l,设抛物线上的点P(m,n)在第四象限,点P关于直线l的对称点为E,点E关于y轴的对称点为F,若四边形OAPF的面积为20,求m、n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•闸北区一模)如果过抛物线y=x2+x上的点P做切线平行于直线y=2x的切线,那么这切线方程是
8x-4y-1=0
8x-4y-1=0

查看答案和解析>>

科目:高中数学 来源: 题型:

在抛物线y=x2+ax-5(a≠0)上取横坐标为x1=-4,x2=2的两点,过这两点引一条割线,有平行于该割线的一条直线同时与抛物线和圆5x2+5y2=36相切,则抛物线顶点的坐标为
 

查看答案和解析>>

同步练习册答案