精英家教网 > 高中数学 > 题目详情
20.函数y=-(n+1)x2+2(1-n)x+1在-1≤x≤1时,y随着x的增大而增大,求实数n的取值范围.

分析 分类讨论,利用二次函数的性质,即可求实数n的取值范围.

解答 解:由题意,-(n+1)=0,即n=-1,y=4x+1在-1≤x≤1时,y随着x的增大而增大;
-(n+1)≠0,函数的对称轴为直线x=$\frac{1-n}{n+1}$.
-(n+1)>0时,$\frac{1-n}{n+1}$≤-1,解得n<-1;
-(n+1)<0时,$\frac{1-n}{n+1}$≥1,解得-1<n≤0,
综上所述,n≤0.

点评 本题考查函数的单调性,考查分类讨论的数学思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.已知数列{an}的首项为1,前n项和为Sn,若数列{an}与{Sn+2}都是公比为q的等比数列,则q的值为(  )
A.$\frac{1}{2}$B.1C.$\frac{3}{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.阅读如图所示的程序框图,运行相应的程序,则输出的结果是0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知抛物线的顶点为坐标原点,焦点是圆x2+(y-3)2=4的圆心,则抛物线的方程是(  )
A.y2=6xB.x2=6yC.y2=12xD.x2=12y

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=$\frac{1}{{3}^{x}+\sqrt{3}}$
(1)分别计算f(0)+f(1);f(-1)+f(2);f(-2015)+f(2016)的值;
(2)试根据(1)的结果归纳猜想出一般性结论,并给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数$f(x)=\frac{1}{4}{x^2}-\frac{1}{a}x+ln(x+a)$,其中常数a>0.
(1)讨论函数f(x)的单调性;
(2)已知$0<a<\frac{1}{2}$,f'(x)表示f(x)的导数,若x1,x2∈(-a,a),x1≠x2,且满足f′(x1)+f′(x2)=0,试比较f′(x1+x2)与f′(0)的大小,并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.
如图,在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AB=5,AA1=4.
(1)设$\overrightarrow{AD}$=λ$\overrightarrow{AB}$,异面直线AC1与CD所成角的余弦值为$\frac{{9\sqrt{10}}}{50}$,求λ的值;
(2)若点D是AB的中点,求二面角D-CB1-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.一个几何体的三视图如图所示,则该几何体的表面积为(  )
A.$\frac{7}{2}$B.$\sqrt{10}$C.4D.$\frac{2+\sqrt{10}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.某次大型运动会的组委会为了搞好接待工作,招募了16名男志愿者和14名女志愿者,调查发现,男、女志愿者中分别有10人和6人喜爱运动,其余人不喜爱运动.
(Ⅰ)根据以上数据完成下面2×2列联表:
喜爱运动不喜爱运动总计
1016
614
总计30
(Ⅱ)能否在犯错误的概率不超过0.10的前提下认为性别与喜爱运动有关系?
(Ⅲ)已知喜欢运动的女志愿者中恰有4人会外语,如果从中抽取2人负责翻译工作,那么抽出的志愿者中至少有1人能胜任翻译工作的概率是多少?
参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
参考数据:
P(K2≥k00.400.250.100.010
k00.7081.3232.7066.635

查看答案和解析>>

同步练习册答案