精英家教网 > 高中数学 > 题目详情
2.利用三角函数线,求满足下列条件的角α的集合.
(1)tanα=-1(0≤α≤2π);
(2)sinα≥-$\frac{1}{2}$(0≤α≤2π).

分析 由题意作出三角函数线,结合特殊角的三角函数可得.

解答 解:(1)由三角函数线可得满足tanα=-1(0≤α≤2π)
的角角α的集合为{$\frac{3π}{4}$,$\frac{7π}{4}$};

(2)由三角函数线可得满足sinα≥-$\frac{1}{2}$(0≤α≤2π)
的角α的集合为[0,$\frac{7π}{6}$]∪[$\frac{11π}{6}$,2π];

点评 本题考查三角函数线求三角函数值得取值范围,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.(1)求函数y=$\sqrt{x+1}$+$\frac{(x+1)^{0}}{2-x}$的定义域;
(2)求函数$y=\frac{2x-1}{x+2}$的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若幂函数y=xα的图象过点$({\sqrt{2},4})$,则α=4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.直线y=kx+1与椭圆$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{5}$=1相交,且过焦点,则k=±$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.函数y=tanax在区间(-$\frac{π}{3}$,$\frac{π}{2}$)上单调递减,则实数a的取值范围为[-1,0).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知对数函数f(x)的图象经过点($\frac{1}{9}$,2),试求f(3)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.正方体ABCD-A1B1C1D1,其中E是AA1的中点,F是A1B1的中点,证明:BF⊥面B1C1E.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若sinα-cosβ=-$\frac{1}{2}$,sinβ-cosα=-$\frac{1}{2}$,α∈(0,$\frac{π}{2}$),β∈(0,$\frac{π}{2}$),则sin(α+β)=$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.若方程a=|2x+1-2|恰有一个根,求实数a的取值范围.

查看答案和解析>>

同步练习册答案