【题目】解答
(1)集合M={1,2,(m2﹣3m﹣1)+(m2﹣5m﹣6)i},N={3,﹣1},M∩N={3},求实数m的值.
(2)已知12= ×1×2×3,12+22= ×2×3×5,12+22+32= ×3×4×7,12+22+32+42= ×4×5×9,由此猜想12+22+…+n2(n∈N*)的表达式并用数学归纳法证明.
【答案】
(1)解:由M={1,2,(m2﹣3m﹣1)+(m2﹣5m﹣6)i},N={3,﹣1},
且M∩N={3},
得(m2﹣3m﹣1)+(m2﹣5m﹣6)i=3,
所以,m2﹣3m﹣1=3且m2﹣5m﹣6=0,
解得m=﹣1;
(2)解:归纳猜想,得12+22+…+n2= (n∈N*);
证明:(1)当n=1时,12= ×1×2×3,猜想成立;
2)假设n=k(k≥1,且k∈N*)时,猜想成立,
即12+22+…+k2= ,
那么当n=k+1时,
12+22+…+k2= +(k+1)2
=
= ,(k∈N*),
所以,当n=k+1时,猜想成立;
由(1)(2)可知,对任意的正整数n,猜想都成立
【解析】(1)根据交集的定义列出方程组,解方程组求出m的值;(2)归纳法猜想得出12+22+…+n2= (n∈N*),再用数学归纳法证明即可.
【考点精析】解答此题的关键在于理解集合的交集运算的相关知识,掌握交集的性质:(1)A∩BA,A∩BB,A∩A=A,A∩=,A∩B=B∩A;(2)若A∩B=A,则AB,反之也成立,以及对数学归纳法的定义的理解,了解数学归纳法是证明关于正整数n的命题的一种方法.
科目:高中数学 来源: 题型:
【题目】已知定义在R上的函数y=f(x)对任意x都满足f(x+1)=﹣f(x),且当0≤x<1时,f(x)=x,则函数g(x)=f(x)﹣ln|x|的零点个数为个.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某班级体育课举行了一次“投篮比赛”活动,为了了解本次投篮比赛学生总体情况,从中抽取了甲乙两个小组样本分数的茎叶图如图所示.
(1)分别求出甲乙两个小组成绩的平均数与方差,并判断哪一个小组的成绩更稳定:
(2)从甲组成绩不低于60分的同学中,任意抽取3名同学,设表示所抽取的3名同学中得分在的学生个数,求的分布列及其数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知为直角坐标系的坐标原点,双曲线 上有一点(),点在轴上的射影恰好是双曲线的右焦点,过点作双曲线两条渐近线的平行线,与两条渐近线的交点分别为, ,若平行四边形的面积为1,则双曲线的标准方程是( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】解答
(1)求证:函数y=x+ 有如下性质:如果常数a>0,那么该函数在(0, ]上是减函数,在[ ,+∞)上是增函数.
(2)若f(x)= ,x∈[0,1],利用上述性质,求函数f(x)的值域;
(3)对于(2)中的函数f(x)和函数g(x)=﹣x﹣2a,若对任意x1∈[0,1],总存在x2∈[0,1],使得g(x2)=f(x1),求实数a的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com