精英家教网 > 高中数学 > 题目详情

在△ABC中,角A,B,C的对边分别为a,b,c,且A,B,C成等差数列.
(1)若数学公式,求c的值;
(2)求sinA+sinC的最大值.

解:(1)∵A,B,C成等差数列,∴B=60°
,∴由余弦定理可得3=1+c2-2ccos60°
即c2-c-2=0
∴c=2或c=-1(舍去)
(2)由已知sinA+sinC=sinA+sin(π-B-A)=sinA+sin(-A)
=sinA+cosA+sinA=sin(A+)≤
当△ABC为正三角形时取等号,此时sinA+sinC的最大值
分析:(1)先确定B,再利用余弦定理,即可求c的值;
(2)根据条件,可将sinA+sinC化为A的三角函数,由此即可得到sinA+sinC的最大值.
点评:本题考查余弦定理的运用,考查三角函数的化简,考查三角函数的最值,正确运用余弦定理,正确化简三角函数是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,角A、B、C所对的边分别为a,b,c,若b2+c2-a2=
3
bc
,且b=
3
a
,则下列关系一定不成立的是(  )
A、a=c
B、b=c
C、2a=c
D、a2+b2=c2

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C的对边分别为a,b,c,已知B=60°,cos(B+C)=-
1114

(1)求cosC的值;
(2)若bcosC+acosB=5,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C的对边分别是a,b,c,且bsinA=
3
acosB

(1)求角B的大小;
(2)若a=4,c=3,D为BC的中点,求△ABC的面积及AD的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A、B、C所对的边分别为a、b、c并且满足
b
a
=
sinB
cosA

(1)求∠A的值;
(2)求用角B表示
2
sinB-cosC
,并求它的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C所对边的长分别为a,b,c,且a=
5
,b=3,sinC=2sinA
,则sinA=
 

查看答案和解析>>

同步练习册答案