对于给定数列,如果存在实常数,使得对于任意都成立,我们称数列是 “类数列”.
(Ⅰ)已知数列是 “类数列”且,求它对应的实常数的值;
(Ⅱ)若数列满足,,求数列的通项公式.并判断是否为“类数列”,说明理由.
|
科目:高中数学 来源: 题型:
对于给定数列,如果存在实常数,使得对于任意都成立,我们称数列是 “M类数列”.
(I)若,,,数列、是否为“M类数列”?
若是,指出它对应的实常数,若不是,请说明理由;
(II)若数列满足,,为常数.
求数列前项的和;
是否存在实数,使得数列是“M类数列”,如果存在,求出;如果不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源:2012-2013学年江西省高考压轴理科数学试卷(解析版) 题型:解答题
对于给定数列,如果存在实常数使得对于任意都成立,我们称数列是“数列”.
(Ⅰ)若,,,数列、是否为“数列”?若是,指出它对应的实常数,若不是,请说明理由;
(Ⅱ)证明:若数列是“数列”,则数列也是“数列”;
(Ⅲ)若数列满足,,为常数.求数列前项的和.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年湖南省高三第三次月考文科数学试卷 题型:解答题
(本小题满分13分)对于给定数列,如果存在实常数,使得对于任意都成立,我们称数列是 “M类数列”.
(I)若,,,数列、是否为“M类数列”?若是,指出它对应的实常数,若不是,请说明理由;
(II)若数列满足,.
(1)求数列前项的和.
(2)已知数列是 “M类数列”,求.
查看答案和解析>>
科目:高中数学 来源:2012届河北省高三下学期理科数学试卷 题型:解答题
对于给定数列,如果存在实常数,使得对于任意都成立,我们称数列是 “类数列”.
(Ⅰ)已知数列是 “类数列”且,求它对应的实常数的值;
(Ⅱ)若数列满足,,求数列的通项公式.并判断是否为“类数列”,说明理由.
查看答案和解析>>
科目:高中数学 来源:2013届北京市高二上学期期中考试理科数学 题型:解答题
((本题满分14分)对于给定数列,如果存在实常数,使得对于任意都成立,我们称数列是 “M类数列”.
(I)若,,,数列、是否为“M类数列”?若是,指出它对应的实常数,若不是,请说明理由;
(II)若数列满足,.
(1) 求数列前项的和.(2)已知数列是 “M类数列”,求.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com