精英家教网 > 高中数学 > 题目详情

【题目】已知双曲线 的左、右焦点分别为 为坐标原点, 是双曲线上在第一象限内的点,直线分别交双曲线左、右支于另一点 ,且,则双曲线的离心率为( )

A. B. C. D.

【答案】B

【解析】由题意, ,连接,根据双曲线的对称性可得为平行四边形, ,由余弦定理可得,故选B.

【方法点晴】本题主要考查利用双曲线的简单性质求双曲线的离心率,属于中档题.求解与双曲线性质有关的问题时要结合图形进行分析,既使不画出图形,思考时也要联想到图形,当涉及顶点、焦点、实轴、虚轴、渐近线等双曲线的基本量时,要理清它们之间的关系,挖掘出它们之间的内在联系.求离心率问题应先将 用有关的一些量表示出来,再利用其中的一些关系构造出关于的等式,从而求出的值.本题是利用点到直线的距离等于圆半径构造出关于的等式,最后解出的值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数为奇函数,且x=-1处取得极大 2

1)求f(x)的解析式;

2)过点A(1,t) 可作函数f(x)图像的三条切线,求实数t的取值范围;

3)若对于任意的恒成立,求实数m取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】 ,…, 是变量个样本点,直线是由这些样本点通过最小二乘法得到的线性回归直线(如图),以下结论中正确的是( )

A. 的相关系数在之间

B. 的相关系数为直线的斜率

C. 为偶数时,分布在两侧的样本点的个数一定相同

D. 所有样本点1,2,…, )都在直线

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数的部分图像如图所示,将的图象向右平移个单位长度后得到函数的图象.

(1)求函数的解析式;

(2)在中,角A,B,C满足,且其外接圆的半径R=2,求的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】平面直角坐标系中,椭圆 的离心率为,过椭圆右焦点作两条互相垂直的弦,当其中一条弦所在直线斜率为0时,两弦长之和为6.

(1)求椭圆的方程;

(2)是抛物线 上两点,且处的切线相互垂直,直线与椭圆相交于两点,求弦的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)讨论的单调性;

(2)若存在最大值 存在最小值,且,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数

(1) 判断并证明f(x)在定义域内的单调性;

(2)证明:当x>-1时,

(3)设当x≥0时, ,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆 的左、右焦点分别为,上顶点为,过垂直的直线交轴负半轴于点,且恰好是线段的中点.

(1)若过三点的圆恰好与直线相切,求椭圆的方程;

(2)在(1)的条件下, 是椭圆的左顶点,过点作与轴不重合的直线交椭圆两点,直线分别交直线两点,若直线的斜率分别为,试问: 是否为定值?若是,求出该定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆关于直线对称的圆为.

(1)求圆的方程;

(2)过点作直线与圆交于两点, 是坐标原点,是否存在这样的直线,使得在平行四边形?若存在,求出所有满足条件的直线的方程;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案