精英家教网 > 高中数学 > 题目详情
具有线性相关关系的变量x,y,满足一组数据如表所示.若y与x的回归直线方程为y=2x则m的值是(  )
x0123
y-11m8
A、4
B、
9
2
C、5
D、6
考点:线性回归方程
专题:计算题,概率与统计
分析:利用平均数公式计算预报中心点的坐标,根据回归直线必过样本的中心点可得答案.
解答: 解:
.
x
=1.5;
.
y
=
8+m
4

∴样本中心点是坐标为(1.5,
8+m
4
),
∵回归直线必过样本中心点,y与x的回归直线方程为y=2x,
8+m
4
=3,
∴m=4
故选:A.
点评:本题考查了线性回归直线的性质,回归直线必过样本的中心点.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下列函数是偶函数的是(  )
A、y=sinx
B、y=cosx
C、y=tanx
D、y=cos(x+
π
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|x2+2x-3<0},B={x|-
2
<x<1},则A∩B=(  )
A、∅
B、{x|-3<x<1}
C、{x|-
2
<x<1}
D、A

查看答案和解析>>

科目:高中数学 来源: 题型:

已知焦点在x轴上的椭圆
x2
a2
+
y2
b2
=1(a>b>0),焦距为2
3
,长轴长为4.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)过点O作两条互相垂直的射线,与椭圆交于A,B两点.
(1)证明:点O到直线AB的距离为定值,并求出这个定值;
(2)求|AB|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,某三棱柱的正视图中的实线部分是边长为4的正方形,俯视图是等边三角形,则该三棱柱的侧视图的面积为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设P是函数y=lnx图象上的动点,则点P到直线y=x的距离的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知:如图①,在矩形ABCD中,AB=5,AD=
20
3
,AE⊥BD,垂足是E,点F是点E关于AB的对称点,连接AF、BF
(1)求AE和BE的长;
(2)若将△ABF沿着射线BD方向平移.设平移的距离为m(平移距离指点B沿BD方向所经过的线段长度).当点F分别平移到线段AB、AD上时,直接写出相应的m的值;
(3)如图②,将△ABF绕点B顺时针旋一个角α(0°<α<180°),记旋转中的△ABF为△A′BF′,在旋转过程中,设A′F′所在的直线与直线AD交于点P,与直线BD交于点Q.是否存在这样的P、Q两点,使△DPQ为等腰三角形?若存在,求出此时DQ的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=alnx-ax-3(a∈R).
(1)若a=-1,求函数f(x)的单调区间;
(2)若函数y=f(x)的图象在点(2,f(2))处的切线的倾斜角为45°,对于任意的t∈[1,2],函数g(x)=x3+x2[f′(x)+
m
2
]在区间(t,3)上总不是单调函数,求m的取值范围;
(3)若x1、x2∈[1,+∞),试比较ln(x1x2)与x1+x2-2的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,设角A,B,C的对边分别为a,b,c.已知B=45°,C=120°,b=2,则c=(  )
A、1
B、
2
C、2
D、
6

查看答案和解析>>

同步练习册答案