精英家教网 > 高中数学 > 题目详情

衡水某中学对高二甲、乙两个同类班级进行“加强‘语文阅读理解’训练对提高‘数学应用题’得分率作用”的试验,其中甲班为试验班(加强语文阅读理解训练),乙班为对比班(常规教学,无额外训练),在试验前的测试中,甲、乙两班学生在数学应用题上的得分率基本一致,试验结束后,统计几次数学应用题测试的平均成绩(均取整数)如下表所示:

 
60分
以下
61~
70分
71~
80分
81~
90分
91~
100分
甲班
(人数)
3
6
11
18
12
乙班
(人数)
4
8
13
15
10
现规定平均成绩在80分以上(不含80分)的为优秀.
(1)试分别估计两个班级的优秀率.
(2)由以上统计数据填写下面2×2列联表,并判断“加强‘语文阅读理解’训练对提高‘数学应用题’得分率”是否有帮助?
 
优秀人数
非优秀人数
总计
甲班
 
 
 
乙班
 
 
 
总计
 
 
 
参考公式及数据:K2=,

(1) 60%和50%   (2)见解析

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

在某种产品表面进行腐蚀性刻线实验,得到腐蚀深度y与腐蚀时间x之间相应的一组观察值,如下表:

x/s
5
10
15
20
30
40
50
60
70
90
120
y/μm
6
10
10
13
16
17
19
23
25
29
46
用散点图及相关系数两种方法判断x与y的相关性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

随机抽取某中学高一级学生的一次数学统测成绩得到一样本,其分组区间和频数是:,2;,7;,10;,x;[90,100],2.其频率分布直方图受到破坏,可见部分如下图所示,据此解答如下问题.

(1)求样本的人数及x的值;
(2)估计样本的众数,并计算频率分布直方图中的矩形的高;
(3)从成绩不低于80分的样本中随机选取2人,该2人中成绩在90分以上(含90分)的人数记为,求的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

为了比较两种治疗失眠症的药(分别称为A药,B药)的疗效,随机地选取20位患者服用A药,20位患者服用B药,这40位患者在服用一段时间后,记录他们日平均增加的睡眠时间(单位:h).试验的观测结果如下:
服用A药的20位患者日平均增加的睡眠时间:

0.6
1.2
2.7
1.5
2.8
1.8
2.2
2.3
3.2
3.5
2.5
2.6
1.2
2.7
1.5
2.9
3.0
3.1
2.3
2.4
服用B药的20位患者日平均增加的睡眠时间:
3.2
1.7
1.9
0.8
0.9
2.4
1.2
2.6
1.3
1.4
1.6
0.5
1.8
0.6
2.1
1.1
2.5
1.2
2.7
0.5
(1) 分别计算两组数据的平均数,从计算结果看,哪种药的疗效更好?
(2) 根据两组数据完成下面茎叶图,从茎叶图看,哪种药的疗效更好?
A药
 
B药
 
0.
1.
2.
3.
 
 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

农科院的专家为了了解新培育的甲、乙两种麦苗的长势情况,从甲、乙两种麦苗的试验田中各抽取6株麦苗测量麦苗的株高,数据如下:(单位:)
甲:9,10,11,12,10,20
乙:8,14,13,10,12,21.

(1)在上面给出的方框内绘出所抽取的甲、乙两种麦苗株高的茎叶图;
(2)分别计算所抽取的甲、乙两种麦苗株高的平均数与方差,并由此判断甲、乙两种麦苗的长势情况.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对照数据.

x
3
4
5
6
y
2.5
3
4
4.5
(1)请画出上表数据的散点图.
(2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程=bx+a.
(3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤?
(参考数值:3×2.5+4×3+5×4+6×4.5=66.5)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

为了解高二某班学生喜爱打篮球是否与性别有关,对本班50人进行了问卷调查得到了如下的列联表:

已知在全部50人中随机抽取1人抽到喜爱打篮球的学生的概率为.
(1)请将上面的列联表补充完整;
(2)是否有99.5%的把握认为喜爱打篮球与性别有关?说明你的理由;
下面的临界值表供参考:

(参考公式K2,其中n=a+b+c+d)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某城市随机抽取一年(365天)内100天的空气质量指数API的监测数据,结果统计如下:

API
 

 

 

 

 

 

 

 
空气质量
 

 

 
轻微污染
 
轻度污染
 
中度污染
 
中重度污染
 
重度污染
 
天数
 
4
 
13
 
18
 
30
 
9
 
11
 
15
 
(1)若某企业每天由空气污染造成的经济损失S(单位:元)与空气质量指数API(记为w)的关系为:
,试估计在本年度内随机抽取一天,该天经济损失S大于200元且不超过600元的概率;
(2)若本次抽取的样本数据有30天是在供暖季,其中有8天为重度污染完成下面列联表,并判断能否有的把握认为该市本年空气重度污染与供暖有关?
附:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
非重度污染
 
重度污染
 
合计
 
供暖季
 
 
 
 
 
 
 
非供暖季
 
 
 
 
 
 
 
合计
 
 
 
 
 
100
 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某班高一某班的一次数学测试成绩的茎叶图和频率分布图都受到不同程度的破坏,但可见部分如下,据此解答如下问题:
 
(1)求分数在[50,60)的频率及全班人数;
(2)求分数在[80,90)之间的频数,并计算频率分布直方图中[80,90)间的矩形的高;
(3)若要从分数在[80,100]之间的试卷中任取两份分析学生失分情况,在抽取的试卷中,求至少有一份分数在[90,100]之间的概率.

查看答案和解析>>

同步练习册答案