精英家教网 > 高中数学 > 题目详情
已知为奇函数,且当时,.当时,的最大值为,最小值为,求的值.
.

试题分析:要求的值,必须求出最大值为,最小值为,一般应该先求出当时,的表达式,而为奇函数,又当时,,故我们可利用奇函数的定义,当时,,故可求出当的表达式.
试题解析:解 ∵时,,且是奇函数,
∴当时,,则.
故当时,.
∴当时,是增函数;
时,是减函数.
因此当时,.
,从而.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

机床厂今年年初用98万元购进一台数控机床,并立即投入生产使用,计划第一年维修、保养费用12万元,从第二年开始,每年所需维修、保养费用比上一年增加4万元,该机床使用后,每年的总收入为50万元,设使用x年后数控机床的盈利额为y万元.
(Ⅰ)写出y与x之间的函数关系式;
(Ⅱ)从第几年开始,该机床开始盈利(盈利额为正值);
(Ⅲ)使用若干年后,对机床的处理方案有两种:
(1)当年平均盈利额达到最大值时,以30万元价格处理该机床;
(2)当盈利额达到最大值时,以12万元价格处理该机床.
请你研究一下哪种方案处理较为合理?请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

近年来,网上购物已经成为人们消费的一种趋势。假设某淘宝店的一种装饰品每月的销售量y(单位:千件)与销售价格x(单位:元/件)满足关系式其中2<x<6,m为常数,已知销售价格为4元/件时,每月可售出21千件。(1)求m的值; (2)假设该淘宝店员工工资、办公等每月所有开销折合为每件2元(只考虑销售出的件数),试确定销售价格x的值,使该店每月销售饰品所获得的利润最大.(结果保留一位小数)

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如果函数没有零点,则的取值范围为             .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

将进货单价为80元的商品按90元一个售出时,能卖出400个,已知该商品每个涨价1元,其销售量就减少20个,为了赚得最大利润,售价应定为(       )
A.每个95元 B.每个100元C.每个105元D.每个110元

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

对于在区间[a,b]上有意义的两个函数,如果对于区间[a,b]中的任意x均有,则称在[a,b]上是“密切函数”, [a,b]称为“密切区间”,若函数在区间[a,b]上是“密切函数”,则的最大值为          .

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

对于函数
①过该函数图像上一点()的切线的斜率为
②函数的最小值为    
③该函数图像与轴有4个交点
④函数上为减函数,在上也为减函数
其中正确命题的序号为                  

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知上的可导函数,当时,,则关于的函数的零点个数为(   )
A.1B.2C.0D.0或2

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设定义在上的函数对任意实数满足,且,则的值为(    )
A.-2B.C.0D.4

查看答案和解析>>

同步练习册答案