【题目】某市房管局为了了解该市市民年月至年月期间买二手房情况,首先随机抽样其中名购房者,并对其购房面积(单位:平方米,)进行了一次调查统计,制成了如图所示的频率分布直方图,接着调查了该市年月至年月期间当月在售二手房均价(单位:万元/平方米),制成了如图所示的散点图(图中月份代码分别对应年月至年月).
(1)试估计该市市民的购房面积的中位数;
(2)现采用分层抽样的方法从购房面积位于的位市民中随机抽取人,再从这人中随机抽取人,求这人的购房面积恰好有一人在的概率;
(3)根据散点图选择和两个模型进行拟合,经过数据处理得到两个回归方程,分别为和,并得到一些统计量的值如下表所示:
0.000591 | 0.000164 | |
0.006050 |
请利用相关指数判断哪个模型的拟合效果更好,并用拟合效果更好的模型预测出年月份的二手房购房均价(精确到)
(参考数据),,,,,,
(参考公式)
【答案】(1) ; (2) (3) 模型的拟合效果更好;万元/平方米
【解析】
(1)先由频率分布直方图,求出前三组频率和与前四组频率和,确定中位数出现在第四组,根据中位数两侧的频率之和均为,即可得出结果;
(2)设从位于的市民中抽取人,从位于的市民中抽取人,根据分层抽样,求出,;由列举法确定从人中随机抽取人所包含的基本事件个数,以及满足条件的基本事件个数,进而可求出概率;
(3)根据题中数据,分别求出两种模型对应的相关指数,比较大小,即可确定拟合效果;再由确定的模型求出预测值即可.
(1)由频率分布直方图,可得,前三组频率和为,
前四组频率和为,
故中位数出现在第四组,且.
(2)设从位于的市民中抽取人,从位于的市民中抽取人,
由分层抽样可知:,则,
在抽取的人中,记名位于的市民为,,,位于的市民为则所有抽样情况为:,,,,,共6种.
而其中恰有一人在口的情况共有种,故所求概率
(3)设模型和的相关指数分别为,,
则,显然
故模型的拟合效果更好.
由年月份对应的代码为,
则万元/平方米
科目:高中数学 来源: 题型:
【题目】设椭圆的一个焦点为,四条直线,所围成的区域面积为.
(1)求的方程;
(2)设过的直线与交于不同的两点,设弦的中点为,且(为原点),求直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】
某营养师要为某个儿童预定午餐和晚餐.已知一个单位的午餐含12个单位的碳水化合物,6个单位的蛋白质和6个单位的维生素;一个单位的晚餐含8个单位的碳水化合物,6个单位的蛋白质和10个单位的维生素.另外,该儿童这两餐需要的营养中至少含64个单位的碳水化合物,42个单位的蛋白质和54个单位的维生素.如果一个单位的午餐、晚餐的费用分别是2.5元和4元,那么要满足上述的营养要求,并且花费最少,应当为该儿童分别预订多少个单位的午餐和晚餐?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某人利用一根原木制作一件手工作品,该作品由一个球体和一个正四棱柱组成,假定原 木为圆柱体(如图1),底面半径为,高为,制作要求如下:首先需将原木切割为两部分(分别称为第I圆柱和第II圆柱),要求切面与原木的上下底面平行(不考虑损耗) 然后将第I圆柱切割为一个球体,要求体积最大,将第II圆柱切割为一个正四棱柱,要求正四棱柱的上下底面分别为第II圆柱上下底面圆的内接正方形.
(1)当时,若第I圆柱和第II圆柱的体积相等,求该手王作品的体积;
(2)对于给定的和,求手工作品体积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知某校甲、乙、丙三个兴趣小组的学生人数分别为36,24,24.现采用分层抽样的方法从中抽取7人,进行睡眠质量的调查.
(1)应从甲、乙、丙三个兴趣小组的学生中分别抽取多少人?
(2)若抽出的7人中有3人睡眠不足,4人睡眠充足,现从这7人中随机抽取3人做进一步的身体检查.用表示抽取的3人中睡眠充足的学生人数,求随机变量的分布列与数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=|2x﹣a|,g(x)=x+1.
(1)若a=1,求不等式f(x)≤1的解集;
(2)对任意的x∈R,f(x)+|g(x)|≥a2+2a(a>0)恒成立,求实数a的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com