精英家教网 > 高中数学 > 题目详情

【题目】三角形的面积为,其中为三角形的边长,为三角形内切圆的半径,则利用类比推理,可得出四面体的体积为( )

A.

B.

C. ,(为四面体的高)

D. ,(分别为四面体的四个面的面积,为四面体内切球的半径)

【答案】D

【解析】

根据平面与空间之间的类比推理,由点类比点或直线,由直线类比直线或平面,由内切圆类比内切球,由平面图形面积类比立体图形的体积,结合求三角形的面积的方法类比求四面体的体积即可.

设四面体的内切球的球心为O,则球心O到四个面的距离都是r

根据三角形的面积的求解方法:分割法,将O与四顶点连起来,可得四面体的体积等于以O为顶点,分别以四个面为底面的4个三棱锥体积的和,

VS1+S2+S3+S4r

故选:D

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知集合,其中,由中的元素构成两个相应的集合:

其中是有序数对,集合中的元素个数分别为

若对于任意的,总有,则称集合具有性质

)检验集合是否具有性质并对其中具有性质的集合,写出相应的集合

)对任何具有性质的集合,证明

)判断的大小关系,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,底面为梯形, 底面 . 

1)求证:平面 平面

2)设上的一点,满足,若直线与平面所成角的正切值为,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为增强市民的节能环保意识,汕头市面向全市征召义务宣传志愿者,从符合条件的 500 名志愿者中随机抽取 100 名,其年龄频率分布直方图如图所示,其中年龄分组区是:

(1)求图中的值,并根据频率分布直方图估计这 500 名志愿者中年龄在岁的人数;

(2)在抽出的 100 名志愿者中按年龄采用分层抽样的方法抽取 10 名参加人民广场的宣传活动,再从这 10 名志愿者中选取 3 名担任主要负责人.记这 3 名志愿者中“年龄低于 35 岁”的人数为 ,求的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( )

A. 1盏 B. 3盏 C. 5盏 D. 9盏

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某小区为了提高小区内人员的读书兴趣,特举办读书活动,准备进一定量的书籍丰富小区图书站,由于不同年龄段需要看不同类型的书籍,为了合理配备资源,现对小区看书人员进行年龄调查,随机抽取了一天40名读书者进行调查,将他们的年龄分成6段: 后得到如图所示的频率分布直方图,问:

(1)在40名读书者中年龄分布在的人数;

(2)估计40名读书者年龄的平均数和中位数;

(3)若从年龄在的读书者中任取2名,求这两名读书者年龄在的人数的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知鸡的产蛋量与鸡舍的温度有关,为了确定下一个时段鸡舍的控制温度,某企业需要了解鸡舍的温度(单位:℃),对某种鸡的时段产蛋量(单位: )和时段投入成本(单位:万元)的影响,为此,该企业收集了7个鸡舍的时段控制温度和产蛋量的数据,对数据初步处理后得到了如图所示的散点图和表中的统计量的值.

17.40

82.30

3.6

140

9.7

2935.1

35.0

其中.

1)根据散点图判断, 哪一个更适宜作为该种鸡的时段产蛋量关于鸡舍时段控制温度的回归方程类型?(给判断即可,不必说明理由)

2)若用作为回归方程模型,根据表中数据,建立关于的回归方程;

3)已知时段投入成本的关系为,当时段控制温度为28℃时,鸡的时段产蛋量及时段投入成本的预报值分别是多少?

附:①对于一组具有有线性相关关系的数据,其回归直线的斜率和截距的最小二乘估计分别为

0.08

0.47

2.72

20.09

1096.63

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)exax1.

1)求f(x)的单调增区间;

2)若f(x)在定义域R内单调递增,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆锥曲线 (是参数)和定点,是圆锥曲线的左、右焦点.

(1)求经过点且垂直于直线的直线的参数方程;

(2)以坐标原点为极点, 轴的正半轴为极轴建立极坐标系,求直线的极坐标方程.

查看答案和解析>>

同步练习册答案