【题目】已知函数,其中.
(1)若为单调递减函数,求的取值范围;
(2)若有两个不同的零点,求的取值范围.
【答案】(1);(2)
【解析】
(1)求出导函数,使,分离参数可得,设,利用导数求出的最小值即可求解.
(2),设,函数有两个不同的零点等价于函数有两个不同的零点,求出,分类讨论当、、或时,利用导数判断函数的单调性即可得出函数的零点个数,进而确定的取值范围.
解:(1)函数的定义域为.
∵,
∴.
若函数为单调递减函数,
则.
∴ 对恒成立.
设.
令,
解得.
∴.
令,解得,
令,解得,
函数在单调递减,在单调递增,
∴函数的最小值为.
∴,即的取值范围是.
(2)由已知,.
设,
则函数有两个不同的零点等价于函数有两个不同的零点.
∵,
∴当时,
函数在单调递减,在单调递增.
若函数有两个不同的零点,
则,即.
当时,
当时,.
当时,,
∵,
∴.
∴.
∴函数在,上各有一个零点.
故符合题意.
当时,
∵函数在单调递减,
∴函数至多有一个零点,不符合题意.
当时,
∵函数在单调递减,在单调递增,在单调递减,
∴函数的极小值为.
∴函数至多有一个零点,不符合题意.
当时,
∵函数在单调递减,在单调递增,在单调递减,
∴函数的极小值为.
∴函数至多有一个零点,不符合题意.
综上,的取值范围是.
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,曲线的参数方程为(为参数),以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,直线的极坐标方程为.
(1)求的普通方程和的直角坐标方程;
(2)直线与轴的交点为,经过点的直线与曲线交于两点,若,求直线的倾斜角.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率,左、右焦点分别是、,以原点为圆心,椭圆的短半轴为半径的圆与直线相切.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)设为椭圆上不在轴上的一个动点,过点作的平行线交椭圆与、两个不同的点,记,,令,求的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数, .
(1)当时,求曲线在点处的切线方程;
(2)当时,求在区间上的最大值和最小值;
(3)当时,若方程在区间上有唯一解,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P-ABCD中,AB//CD,且.
(1)证明:平面PAB⊥平面PAD;
(2)若PA=PD=AB=DC, ,求二面角A-PB-C的余弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com