精英家教网 > 高中数学 > 题目详情
19.7个人排成一排,在下列情况下,各有多少种不同排法?:
(1)甲不排头,也不排尾:
(2)甲、乙之间有且只有两人:
(3)甲不排头,乙不排当中.

分析 (1)甲不排头,也不排尾;则甲在中间,先排甲,再排其他.
(2)从甲、乙之外的5人中选2个人排甲、乙之间,甲、乙可以交换,把该四人当成一个整体,再加上另三人,相当于4人的全排列,
(3)考虑限制条件有A66,而甲排头有A66,乙排当中有A66,这样重复了甲排头,乙排当中A55

解答 解:(1)甲有中间5个位置供选择,共有A51A66=3600种,
(2)从甲、乙之外的5人中选2个人排甲、乙之间,有A52,甲、乙可以交换有A22,把该四人当成一个整体,再加上另三人,相当于4人的全排列,则共有A52A22A44=960种;
(3)不考虑限制条件有A66,而甲排头有A66,乙排当中有A66,这样重复了甲排头,乙排当中A55次,即A77-2A66+A55=3720.

点评 本题考查排列、组合的应用,注意特殊问题的处理方法,如相邻用捆绑法,不能相邻用插空法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.【理】已知抛物线的方程为x2=2py(p>0),过点A(0,-1)作直线l与抛物线相交于P,Q两点,点B的坐标为(0,1),连接BP,BQ,设BQ,BP与x轴分别相交于M,N两点.如果QB的斜率与PB的斜率的乘积为-3,则∠MBN的大小等于(  )
A.$\frac{π}{2}$B.$\frac{π}{4}$C.$\frac{π}{6}$D.$\frac{π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知两个等差数列{an}和{bn}的前n项和分别记为Sn和Tn,若$\frac{S_n}{T_n}=\frac{2n+1}{n+3}$,则$\frac{a_9}{b_9}$=(  )
A.$\frac{7}{4}$B.$\frac{3}{5}$C.$\frac{37}{21}$D.$\frac{19}{12}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知在△ABC中,cosA=-$\frac{5}{13}$,cosB=$\frac{3}{5}$.
(Ⅰ)求sinC的值;
(Ⅱ)设△ABC的面积S△ABC=$\frac{32}{5}$,求AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.(Ⅰ)解不等式(x+2)2(x+3)(x-2)≥0;
(Ⅱ)关于x的不等式ax2+bx+c<0的解集为{x|x<-2或x>-$\frac{1}{2}$},求关于x的不等式cx2+bx+a>0的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.“a=2”是“函数f(x)=x2+3ax-2在区间(-∞,-2]内单调递减”的(  )
A.充分非必要条件B.必要非充分条件
C.充要条件D.既非充分又非必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若抛物线的顶点在原点,焦点是双曲线$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{4}$=1的顶点,则抛物线的方程是(  )
A.y2=4x,y2=-4xB.y2=6x,y2=-6xC.y2=10x,y2=-10xD.y2=12x,y2=-12x

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.在等差数列{an}中,若a1+a2+a3=32,a11+a12+a13=118,则a4+a10=(  )
A.45B.50C.75D.60

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.求不等式x2-3x-18≥0成立的区间.

查看答案和解析>>

同步练习册答案