精英家教网 > 高中数学 > 题目详情

【题目】为实现有效利用扶贫资金,增加贫困村民的收入,扶贫工作组结合某贫困村水质优良的特点,决定利用扶贫资金从外地购买甲、乙、丙三种鱼苗在鱼塘中进行养殖试验,试验后选择其中一种进行大面积养殖,已知鱼苗甲的自然成活率为0.8.鱼苗乙,丙的自然成活率均为0.9,且甲、乙、丙三种鱼苗是否成活相互独立.

1)试验时从甲、乙,丙三种鱼苗中各取一尾,记自然成活的尾数为,求的分布列和数学期望;

2)试验后发现乙种鱼苗较好,扶贫工作组决定购买尾乙种鱼苗进行大面积养殖,为提高鱼苗的成活率,工作组采取增氧措施,该措施实施对能够自然成活的鱼苗不产生影响.使不能自然成活的鱼苗的成活率提高了50%.若每尾乙种鱼苗最终成活后可获利10元,不成活则亏损2元,且扶贫工作组的扶贫目标是获利不低于37.6万元,问需至少购买多少尾乙种鱼苗?

【答案】1)分布列见解析,2.6240000

【解析】

1)由题意得随机变量的所有可能取值为0123,利用相互独立事件同时发生的概率,可计算的值,进而得到分布列和期望;

2)依题意知一尾乙种鱼苗最终成活的概率为,计算一尾乙种鱼苗的平均收益,进而计算尾乙种鱼苗最终可获得的利润,再解不等式,即可得答案.

1)记随机变量的所有可能取值为0123

.

的分布列为

0

1

2

3

0.002

0.044

0.306

0.648

.

2)根据已知乙种鱼苗自然成活的概率为0.9

依题意知一尾乙种鱼苗最终成活的概率为

所以一尾乙种鱼苗的平均收益为.

设购买尾乙种鱼苗,为购买尾乙种鱼苗最终可获得的利润,

,解得.

所以需至少购买40000尾乙种鱼苗,才能确保获利不低于37.6万元.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某连锁餐厅新店开业,打算举办一次食品交易会,招待新老顾客试吃.项目经理通过查阅最近次食品交易会参会人数(万人)与餐厅所用原材料数量(袋),得到如下统计表:

第一次

第二次

第三次

第四次

第五次

参会人数(万人)

原材料(袋)

1)根据所给组数据,求出关于的线性回归方程

2)已知购买原材料的费用(元)与数量(袋)的关系为,投入使用的每袋原材料相应的销售收入为元,多余的原材料只能无偿返还,据悉本次交易大会大约有万人参加,根据(1)中求出的线性回归方程,预测餐厅应购买多少袋原材料,才能获得最大利润,最大利润是多少?(注:利润销售收入原材料费用).

参考公式:.

参考数据:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)讨论上的单调性;

(Ⅱ)设,若的最大值为0,求的值;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,要利用一半径为的圆形纸片制作三棱锥形包装盒.已知该纸片的圆心为,先以为中心作边长为(单位:)的等边三角形,再分别在圆上取三个点,使分别是以为底边的等腰三角形.沿虚线剪开后,分别以为折痕折起,使得重合于点,即可得到正三棱锥.

1)若三棱锥是正四面体,求的值;

2)求三棱锥的体积的最大值,并指出相应的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某小区为了加强对“新型冠状病毒”的防控,确保居民在小区封闭期间生活不受影响,小区超市采取有力措施保障居民正常生活物资供应.为做好甲类生活物资的供应,超市对社区居民户每天对甲类生活物资的购买量进行了调查,得到了以下频率分布直方图.

1)从小区超市某天购买甲类生活物资的居民户中任意选取5.

①若将频率视为概率,求至少有两户购买量在(单位:)的概率是多少?

②若抽取的5户中购买量在(单位:)的户数为2户,从5户中选出3户进行生活情况调查,记3户中需求量在(单位:)的户数为,求的分布列和期望;

2)将某户某天购买甲类生活物资的量与平均购买量比较,当超出平均购买量不少于时,则称该居民户称为“迫切需求户”,若从小区随机抽取10户,且抽到k户为“迫切需求户”的可能性最大,试求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和为Sna11an0Sn2an+12λSn+1,其中λ为常数.

1)证明:Sn+12Sn+λ

2)是否存在实数λ,使得数列{an}为等比数列,若存在,求出λ;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知三棱锥如图一)的平面展开图(如图二)中,四边形为边长等于的正方形均为正三角形,在三棱锥中:

(I)证明:平面平面

Ⅱ)若点在棱上运动,当直线与平面所成的角最大时,求二面角的余弦值.

图一

图二

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知离心率为的椭圆的左顶点为,左焦点为,及点,且成等比数列.

1)求椭圆的方程;

2)斜率不为的动直线过点且与椭圆相交于两点,记,线段上的点满足,试求为坐标原点)面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.

1)求曲线的极坐标方程和的直角坐标方程;

2)直线与曲线分別交于第一象限内两点,求.

查看答案和解析>>

同步练习册答案