精英家教网 > 高中数学 > 题目详情
12、设α,β,γ是三个不重合的平面,l是直线,给出下列四个命题:
①若α⊥β,l⊥β,则l∥α;
②若l⊥α,l∥β,则α⊥β;
③若l上有两点到α的距离相等,则l∥α;
④若α⊥β,α∥γ,则γ⊥β.
其中正确命题的序号是
②④
分析:根据直线与平面平行的判断定理及其推论对①、②、③、④四个命题进行一一判断;
解答:解:①错误,l可能在平面α内;
②正确,l∥β,l?γ,β∩γ=n?l∥n?n⊥α,则α⊥β;
③错误,直线可能与平面相交;
④∵α⊥β,α∥γ,?γ⊥β,故④正确.
故答案为②④;
点评:此题考查直线与平面平行的判断定理:
公理二:如果两个平面有一个公共点则它们有一条公共直线且所有的公共点都在这条直线上
公理三:三个不共线的点确定一个平面
推论一:直线及直线外一点确定一个平面
推论二:两相交直线确定一个平面,
这些知识要熟练掌握.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

3、设α,β,γ是三个不重合的平面,l是直线,给出下列命题
①若α⊥β,β⊥γ,则α⊥γ;②若l上两点到α的距离相等,则l∥α;
③若l⊥α,l∥β,则α⊥β;④若α∥β,l?β,且l∥α,则l∥β.
其中正确的命题是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设α,β,γ是三个不重合的平面,m,n是不重合的直线,下列判断正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

a
b
c
是三个不共面的向量,现在从①
a
+
b
;②
a
-
b
;③
a
+
c
;④
b
+
c
;⑤
a
+
b
+
c
中选出使其与
a
b
构成空间的一个基底,则可以选择的向量为
③④⑤
③④⑤

查看答案和解析>>

科目:高中数学 来源: 题型:

设α、β、γ是三个不重合的平面,m、n为两条不同的直线.给出下列命题:
①若n∥m,m?α,则n∥α;
②若α∥β,n?β,n∥α,则n∥β;
③若β⊥α,γ⊥α,则β∥γ;
④若n∥m,n⊥α,m⊥β,则α∥β.其中真命题是(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

a
b
c
是三个不共面的向量,现在从①
a
+
b
;②
a
-
b
;③
a
+
c
;④
b
+
c
;⑤
a
+
b
+
c
中选出使其与
a
b
构成空间的一个基底,则可以选择的向量为______.

查看答案和解析>>

同步练习册答案