分析 由已知中函数解析式f(x),我们易求出导函数f′(x)的解析式,然后根据函数f(x)有极值,方程f′(x)=x2-x+c=0有两个实数解,构造关于c的不等式,解不等式即可得到c的取值范围.
解答 解:∵f(x)=$\frac{1}{3}$x3-$\frac{1}{2}$x2+cx+d,
∴f′(x)=x2-x+c,要使f(x)有极值,
则方程f′(x)=x2-x+c=0有两个实数解,
从而△=1-4c>0,
∴c<$\frac{1}{4}$,
故答案为:$(-∞,\frac{1}{4})$.
点评 本题考查的知识点是函数在某点取得极值的条件,导数在最大值,最小值问题中的应用,其中根据已知中函数的解析式,求出函数的导函数的解析式,是解答本题的关键.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{x^2}{4}$+y2=1 | B. | $\frac{x^2}{8}$+$\frac{y^2}{6}$=1 | C. | $\frac{x^2}{2}$+y2=1 | D. | $\frac{x^2}{4}$+$\frac{y^2}{3}$=1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com