精英家教网 > 高中数学 > 题目详情

,函数
(1)若是函数的极值点,求的值;
(2)在(1)的条件下,求函数在区间上的最值.
(3)是否存在实数,使得函数 在上为单调函数,若是,求出的取值范围,若不是,请说明理由。

(1)(2)最大值55最小值-8(3)不存在

解析试题分析:解:(1)  
(2)  
  最大值55最小值-8
(3) 要使得函数 在上单调递增

考点:导数的应用
点评:导数常应用于求曲线的切线方程、求函数的最值与单调区间、证明不等式和解不等式中参数的取值范围等。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数,其中是常数且.
(1)当时,在区间上单调递增,求的取值范围;
(2)当时,讨论的单调性;
(3)设是正整数,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知,
(1)讨论的单调区间;
(2)若对任意的,且,有,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)当时,求曲线在点处的切线方程;
(Ⅱ)求函数的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,一矩形铁皮的长为8cm,宽为5cm,在四个角上截去四个相同的小正方形,制成一个无盖的小盒子,问小正方形的边长为多少时,盒子容积最大?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数.
(1)若函数图像上的点到直线距离的最小值为,求的值;
(2)关于的不等式的解集中的整数恰有3个,求实数的取值范围;
(3)对于函数定义域上的任意实数,若存在常数,使得都成立,则称直线为函数
“分界线”.设,试探究是否存在“分界线”?若存在,求出“分界线”的方程,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求函数的单调区间;
(2)求函数在区间[0,3]上的最大值与最小值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)当时,求的单调区间;
(2)若函数上无零点,求的最小值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数).
(1)当时,求证:上单调递增;
(2)当时,求证:.

查看答案和解析>>

同步练习册答案