精英家教网 > 高中数学 > 题目详情
15.已知锐角α满足$cos2α=sin(\frac{π}{4}+α)$,则sin2α等于(  )
A.$\frac{1}{2}$B.$-\frac{1}{2}$C.$\frac{{\sqrt{2}}}{2}$D.$-\frac{{\sqrt{2}}}{2}$

分析 先根据二倍角公式以及和差角公式对已知条件两边整理得cosα-sinα=$\frac{\sqrt{2}}{2}$,再两边平方即可得到结论.

解答 解:∵cos2α=cos2α-sin2α=(cosα-sinα)(cosα+sinα);①
sin($\frac{π}{4}+α$)=$\frac{\sqrt{2}}{2}$(cosα+sinα);②
∵锐角α满足cos2α=sin($\frac{π}{4}$-α),③
∴由①②③得,cosα-sinα=$\frac{\sqrt{2}}{2}$,
两边平方整理得:1-sin2α=$\frac{1}{2}$,则sin2α=$\frac{1}{2}$.
故悬案:A.

点评 本题主要考查三角函数的恒等变换及化简求值.解决这类题目的关键在于对公式的熟练掌握及其应用,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.若方程lgx=3-x的根x0∈(n,n+1),n∈Z,则n=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若l、m、n是互不相同的空间直线,α,β不是重合的平面,则下列命题中为真命题的是(  )
A.若α∥β,l?α,n?β,则l∥nB.若α⊥β,l?α,则l⊥β
C.若l⊥α,l?β,则α⊥βD.若l⊥n,m⊥n,则l∥m

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知球内接正三棱锥的底边边长为3,高为4,求外接球的半径.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设集合A={y|y=2x,1≤x≤2},B={x|log3x<1},C={x|t+1<x<2t,t∈R}.
(1)求A∩B;
(2)若A∩C=C,求t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知全集U=R,集合A={x|(x+2)(x-1)>0},B={x|-4≤x<0},则A∪(∁UB)为(  )
A.{x|x<-2或x≥0}B.{x|x<-2或x>1}C.{x|x<-4或x≥0}D.{x|x<-4或x>1}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知数列{an}满足${a_{n+1}}=\frac{{2{a_n}+3}}{{{a_n}+4}}\;(n∈{N^*})$,设${b_n}=\frac{{{a_n}-λ}}{{{a_n}-μ}}\;\;(n∈{N^*},λ,μ$为均不等于2的且互不相等的常数),若数列{bn}为等比数列,则λ•μ的值为-3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.某等差数列前40项之和为10,前16项之和为100,求此数列的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点分别为F1、F2,且F2(1,0),O为坐标原点,点M($\frac{2}{3}$,$\frac{2\sqrt{6}}{3}$)为椭圆C上的点.
(1)求C的方程:
(2)平面上的点N满足$\overrightarrow{MN}$=$\overrightarrow{M{F}_{1}}$+$\overrightarrow{M{F}_{2}}$,直线1平行于MN且与椭圆C交于A、B两点,若$\overrightarrow{OA}$•$\overrightarrow{OB}$=0,求直线l的方程.

查看答案和解析>>

同步练习册答案