精英家教网 > 高中数学 > 题目详情
19.定义行列式运算:$|\begin{array}{l}{{a}_{1}}&{{a}_{2}}\\{{a}_{3}}&{{a}_{4}}\end{array}|$=a1a4-a2a3,函数f(x)=$|\begin{array}{l}{\sqrt{3}}&{cos2x}\\{1}&{sin2x}\end{array}|$,则要得到函数f(x)的图象,只需将y=2cos2x的图象(  )(  )
A.向左平移$\frac{2π}{3}$个单位B.向左平移$\frac{π}{3}$个单位
C.向右平移$\frac{2π}{3}$个单位D.向右平移$\frac{π}{3}$个单位

分析 由二阶行列式的性质得:f(x)=$\sqrt{3}sin2x-cos2x$,再由三角函数恒等式和诱导公式得到f(x)=2cos(2x-$\frac{2π}{3}$),由此利用三角函数图象的平移变换能求出结果.

解答 解:f(x)=$|\begin{array}{l}{\sqrt{3}}&{cos2x}\\{1}&{sin2x}\end{array}|$=$\sqrt{3}sin2x-cos2x$
=2sin(2x-$\frac{π}{6}$)=2cos[$\frac{π}{2}$-(2x-$\frac{π}{6}$)]=2cos(2x-$\frac{2π}{3}$),
∴要得到函数f(x)的图象,
只需将y=2cos2x的图象y=2cos2x的图象向右平移$\frac{π}{3}$个单位.
故选:D.

点评 本题考查三角函数的图象的平移变换,是中档题,解题时要认真审题,注意二阶行列式、三角恒等式、三角函数图象的平移变换诱导公式等知识的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.在梯形ABCD中,AB⊥BC,AD∥BC,BC=2AD=2AB=4,将梯形ABCD绕AD所在的直线旋转一周而形成的曲面所围成的几何体的体积为$\frac{40π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知定义在R上的偶函数f(x)在[0,+∞)单调递增,且f(2)=0,则不等式f(x)•x>0的解集是(-2,0)∪(2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.求椭圆的标准方程
(1)求经过点(2,-3),且与椭圆9x2+4y2=36有共同焦点的椭圆方程.
(2)已知椭圆经过点$(2,-\sqrt{2})$和点$(-1,\frac{{\sqrt{14}}}{2})$,求它的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.如图所示,已知△ABC中,∠C=90°,AC=6,BC=8,D为边AC上的一点,K为BD上的一点,且∠ABC=∠KAD=∠AKD,则DC=$\frac{7}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.有一个球心为O,半径R=2的球,球内有半径r=$\sqrt{3}$的截面圆,截面圆心为A,连接AO并延长交球面于P点,以截面为底,P为顶点,可以做出一个圆锥,则圆锥的体积为3π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知抛物线x2=2py(p>0)与直线3x-2y+1=0交于A,B两点,$|{AB}|=\frac{5}{8}\sqrt{13}$,点M在抛物线上,MA⊥MB.
(Ⅰ) 求p的值;
(Ⅱ) 求点M的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.计算:(化到最简形式)
(1)${64^{\frac{1}{3}}}-{(-\frac{1}{9})^0}+3•{(-2)^2}+{2^3}$;     
(2)$2{log_3}2-{log_3}\frac{32}{9}+{log_3}8+{3^{{{log}_3}2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.如图,在△ABC中,点D在AC上,BC⊥AD,BC⊥BD,若BD=7,AB=8,sin∠ABC=$\frac{13}{14}$,则AD的长为3.

查看答案和解析>>

同步练习册答案