精英家教网 > 高中数学 > 题目详情
7.若将函数y=cos(2x+$\frac{π}{4}$)的图象向左平移$\frac{π}{6}$个单位长度,则平移后图象的一个对称中心是(  )
A.($\frac{π}{24}$,0)B.($\frac{5π}{24}$,0)C.($\frac{11π}{24}$,0)D.($\frac{11π}{12}$,0)

分析 根据函数图象平移公式,所得图象对应函数为y=cos(2x+$\frac{7π}{12}$),再由三角函数图象对称中心的公式解关于x的方程,即可得到所得图象的一个对称中心.

解答 解:∵y=cos(2x+$\frac{π}{4}$),
∴图象向左平移$\frac{π}{6}$个单位,得y=cos[2(x+$\frac{π}{6}$)+$\frac{π}{4}$]=cos(2x+$\frac{7π}{12}$)的图象,
令2x+$\frac{7π}{12}$=kπ+$\frac{π}{2}$,k∈Z,得x=$\frac{kπ}{2}$-$\frac{π}{24}$,k∈Z,
取k=1,得x=$\frac{11π}{24}$,
∴所得图象的一个对称中心是($\frac{11π}{24}$,0).
故选:C.

点评 本题给出三角函数图象的平移,求所得图象的一个对称中心,着重考查了三角函数的图象与变换、函数图象对称中心公式等知识,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.若点(2,2)不在x-(4a2+3a-2)y-4<0表示的平面区域内,则实数a的取值范围是(  )
A.$(-1,\frac{1}{4})$B.$({-∞,-1})∪(\frac{1}{4},+∞)$C.$({-∞,-1}]∪[\frac{1}{4},+∞)$D.$[-1,\frac{1}{4}]$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知方程(m2-2m-3)x+(2m2+m-1)y+5-2m=0(m∈R).
(1)求方程表示一条直线的条件;
(2)当m为何值时,方程表示的直线与x轴垂直;
(3)若方程表示的直线在两坐标轴上的截距相等,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设数列{an}是等比数列,公比q=2,Sn为{an}的前n项和,记Tn=$\frac{9{S}_{n}-{S}_{2n}}{{a}_{n+1}}$(n∈N*),则数列{Tn}最大项的值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知圆锥的母线长为5cm,高为4cm,求这个圆锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知向量$\overrightarrow{a}$=(m,2),$\overrightarrow{b}$=(2,-3).若($\overrightarrow{a}$+$\overrightarrow{b}$)∥($\overrightarrow{a}$-$\overrightarrow{b}$),则实数m=-$\frac{4}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=x3+ax2-4x+c,g(x)=lnx+(b-1)x+4,曲线y=f(x)在x=1处的切线方程为3x-y+1=0.
(Ⅰ)求f(x)的解析式;
(Ⅱ)若对?x1∈[-3,0],?x2∈[0,+∞)恒有f(x1)≥g(x2)成立,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.一个口袋内装有大小相同的1个白球和已编有不同号码的3个黑球,从中任意摸出2个球;
(1)共有多少种不同的结果?
(2)若摸出的是2个黑球,则有多少种不同的摸法?
(3)摸出2个黑球的概率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知α是第三象限角,且cosα=-$\frac{4}{5}$,则tan$\frac{α}{2}$等于(  )
A.-$\frac{3}{4}$B.$\frac{3}{4}$C.-3D.3

查看答案和解析>>

同步练习册答案