精英家教网 > 高中数学 > 题目详情
6.如果直线x+2ay-1=0与直线(2a-1)x-ay-1=0平行,则a等于0或$\frac{1}{4}$.

分析 根据题意,直线x+2ay-1=0与直线(2a-1)x-ay-1=0平行,则有1×(-a)=2a×(2a-1),解可得a的值,分别验证a的值是否符合两直线平行的要求,即可得答案.

解答 解:根据题意,直线x+2ay-1=0与直线(2a-1)x-ay-1=0平行,
则有1×(-a)=2a×(2a-1),
解可得a=0或$\frac{1}{4}$,
当a=0时,两直线的方程为x-1=0和-x-1=0,两直线平行;
当a=$\frac{1}{4}$时,两直线的方程为x+$\frac{1}{2}$y-1=0和-$\frac{1}{2}$x-$\frac{1}{4}$y-1=0,两直线平行;
则a的值为0或$\frac{1}{4}$,
故答案为0或$\frac{1}{4}$.

点评 本题考查直线与直线平行的判定方法,关键是掌握用直线的一般式方程判定直线平行的方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.设函数f(x)(x∈R)满足f(-x)=f(x),f(x)=f(2-x),且当x∈[0,1]时,f(x)=x3,则方程f(x-1)=cosπx(-2≤x≤4)所有实根的和为(  )
A.12B.10C.8D.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.(1)在等差数列{an}中,已知a1=20,前n项和为Sn,且S10=S15,求当n取何值时,Sn取得最大值,并求出它的最大值;
(2)在公差为d的等差数列{an}中,已知a1=10,且a1,2a2+2,5a3成等比数列.
①求d,an
②若d<0,求|a1|+|a2|+|a3|+…+|an|.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知圆0:x2+y2=r2(r>0)与直线x+2y-5=0相切.
(1)求圆O的方程;
(2)若过点(-1,3)的直线l被圆0所截得的弦长为4,求直线1的方程;
(3)若过点A(0,$\sqrt{5}$)作两条斜率分别为k1,k2的直线交圆0于B、C两点,且k1k2=-$\frac{1}{2}$,求证:直线BC恒过定点.并求出该定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.对任意的x,有f′(x)=4x3,f(1)=-1,则此函数解析式(  )
A.f(x)=x3B.f(x)=x4-2C.f(x)=x3+1D.f(x)=x4-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.对于非零向量$\overrightarrow{a}$、$\overrightarrow{b}$满足|$\overrightarrow{a}$|=1,($\overrightarrow{a}$+$\overrightarrow{b}$)•($\overrightarrow{a}$-2$\overrightarrow{b}$)=0.则|$\overrightarrow{b}$|的取值范围是[$\frac{1}{2}$,1].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.不等式$\frac{ax}{x-1}$<1解集为(-∞,1)∪(2,+∞),则log2(x2-1)a的定义域为{x|x>1或x<-1}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知1gx=1.7,1gy=3.4,则下列选项中与lg(x2+2y)最接近的一个值为(  )
A.3.4B.3.9C.5.1D.7.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.在平面直角坐标系xOy中,若曲线$y={a^2}{x^2}-\frac{b^2}{x}$(a,b为常数) 过点P(1,y0),且该曲线在点P处的切线与直线2x-y+3=0平行,则$\frac{{8{b^2}+{a^2}}}{{{a^2}{b^2}}}$取得最小值时y0值为$\frac{2}{5}$.

查看答案和解析>>

同步练习册答案